The gas flows from higher concentration/pressure to lower concentration/pressure, which is outside the ball.
C becuase that is the one that you would have to do becuase that is the only option
The chemical equation without coefficients is:
Ca + CO2 + O2 --------> Ca CO3
You can balance that equation by trial an error.
This is the chemical equation balanced:
2Ca + 2CO2 + O2 --------> 2Ca CO3
Count the atoms on each side to check the balance
Atom Left side right side
Ca 2 2
C 2 2
O 2*2 + 2 = 6 2*3 = 6
Then those are the coefficients:
a0 = 2
a1 = 2
a2 = 1
a3 = 2
Answer:
1.089%
Explanation:
From;
ν =1/2πc(k/meff)^1/2
Where;
ν = wave number
meff = reduced mass or effective mass
k = force constant
c= speed of light
Let
ν =1/2πc (k/meff)^1/2 vibrational wave number for 23Na35 Cl
ν' =1/2πc(k'/m'eff)^1/2 vibrational wave number for 23Na37 Cl
The between the two is obtained from;
ν' - ν /ν = (k'/m'eff)^1/2 - (k/meff)^1/2 / (k/meff)^1/2
Therefore;
ν' - ν /ν = [meff/m'eff]^1/2 - 1
Substituting values, we have;
ν' - ν /ν = [(22.9898 * 34.9688/22.9898 + 34.9688) * (22.9898 + 36.9651/22.9898 * 36.9651)]^1/2 -1
ν' - ν /ν = -0.01089
percentage difference in the fundamental vibrational wavenumbers of 23Na35Cl and 23Na37Cl;
ν' - ν /ν * 100
|(-0.01089)| × 100 = 1.089%
The number of moles of b2o3 that will be formed is determined as 4 moles.
<h3>
Limiting reagent</h3>
The limiting reagent is the reactant that will be completely used up.
4 b + 3O₂ → 2b₂O₃
from the equation above;
4 b ------------> 2 b₂O₃
2b ------------> b₂O₃
2 : 1
3O₂ -------------> 2b₂O₃
3 : 2
b is the limiting reagent, thus, the amount of b2o3 to be formed is calculated as;
4 b ------------> 2 moles of b2o3
8 moles -------> ?
= (8 x 2)/4
= 4 moles
Thus, the number of moles of b2o3 that will be formed is determined as 4 moles.
Learn more about limiting reactants here: brainly.com/question/14222359
#SPJ1