Answer:
<h3>homeostasis</h3>
•the maintenance of a stable internal environment
<u><em>Hope </em><em>this</em><em> helps</em><em> </em><em>:</em><em>)</em></u>
Answer:
[See Below]
Explanation:
✦ Physical Changes:
✧ Is when the form changes, but not the chemicals in that form.
✧ An example of this would be chopping wood. It's still wood but it's a different size now. It's easier to burn it since it's smaller.
✦ Chemical Changes:
✧ Is when the chemicals inside that form change to something else entirely
✧ An example would be an egg, when you cook the egg it can turn into being scrambled or fried. But you can't eat the raw egg until the chemicals change.
~<em>Hope this helps Mate. If you need anything feel free to message me.</em>
Explanation:
To find the amount of product that would be formed from two or more reactants, we need to follow the following steps;
- Find the number of moles of the given reactants.
- Then proceed to determine the limiting reactant. The limiting reactant is the one in short supply which determines the extent of the reaction.
- Use the number of moles of the limiting reactant to find the number of moles of the product.
- Then use this number of moles to find the mass of the product
Useful expression:
Mass = number of moles x molar mass
Answer:
B
[(0.75)^3(0.25)]÷[(0.50)^2(0.75)]
Explanation:
toppr dot com
Answer:
E) All of the above.
Explanation:
Hello,
Since the acidic nature of the HCl implies its corrosiveness, when it is in contact with the skin and eyes the burning starts immediately, so gloves and goggles must be worn. Next, the fuming hydrochloric acid (37% by mass) is volatile so it gives off even when dissolved into water, so it must be used in the fume hood. Then, since vapors are produced during the chemical reaction, an overpressure could be attained, that's why we must keep the glass sash of the fume hood between us and the vial. As a common risk, the vial could be dropped causing the hydrochloric acid to splash, so we must keep the vial well inside the hood.
Best regards.