Answer:
1. HSO³⁻(aq) + H₂O(l) → H₂SO₃(aq) + OH⁻(aq)
<u>The Brønsted-Lowry acid is H₂O and the Brønsted-Lowry base is HSO³⁻</u>
<u />
2. (CH₃)₃N(g) + BCl₃(g) → (CH₃)₃NBCl₃(s)
<u>There are no Brønsted-Lowry acids and bases in this reaction.</u>
Explanation:
According to the Brønsted-Lowry concept, when an acid (HA) and a base (B) undergoes a chemical reaction, the acid (HA) loses a proton and forms its conjugate base (A⁻), whereas the base gains (B) the proton to form its conjugate acid (HB⁺).
<em>The chemical equation for this reaction is:</em>
HA + B ⇌ A⁻ + HB⁺
Given reactions:
1. HSO³⁻(aq) + H₂O(l) → H₂SO₃(aq) + OH⁻(aq)
<u>The Brønsted-Lowry acid is H₂O and the Brønsted-Lowry base is HSO³⁻</u>
Reason: In this reaction, the acid H₂O loses a proton and forms its conjugate base, OH⁻. Whereas, the base HSO³⁻ gains a proton to form its conjugate acid, H₂SO₃.
2. (CH₃)₃N(g) + BCl₃(g) → (CH₃)₃NBCl₃(s)
<u>There are no Brønsted-Lowry acids and bases in this reaction.</u>
Reason: In this reaction, there is no exchange of proton between the acid and the base.
Low clouds
Stratus clouds are uniform grayish clouds that often cover the sky. Usually no precipitation falls from stratus clouds, but they may drizzle. When a thick fog “lifts,” the resulting clouds are low stratus. Nimbostratus clouds form a dark gray, “wet” looking cloudy layer associated with continuously falling rain or snow. They often produce light to moderate precipitation.
Middle clouds
Clouds with the prefix “alto” are middle-level clouds that have bases at 6,500 to 23,000 feet up. Altocumulus clouds are made of water droplets and appear as gray, puffy masses, sometimes rolled out in parallel waves or bands. These clouds on a warm, humid summer morning often mean thunderstorms by late afternoon. Altostratus clouds, gray or blue-gray, are made up of ice crystals and water droplets. They usually cover the sky. In thinner areas of them, the sun may be dimly visible as a round disk. Altostratus clouds often form ahead of storms that produce continuous precipitation.
High clouds
Cirrus clouds are thin, wispy clouds blown by high winds into long streamers. They are considered “high clouds,” forming at more than 20,000 feet. They usually move across the sky from west to east and generally mean fair to pleasant weather. Cirrostratus, thin, sheetlike clouds that often cover the sky, are so thin the sun and moon can be seen through them. Cirrocumulus clouds appear as small, rounded white puffs. Small ripples in the cirrocumulus sometimes resemble the scales of a fish, creating what is sometimes called a “mackerel sky.”
Vertical clouds
Cumulus clouds are puffy and can look like floating cotton. The base of each is often flat and may be only 330 feet above ground. The top has rounded towers. When the top resembles a cauliflower head, it is called “cumulus congestus.” These grow upward and if they continue to grow vertically can develop into a giant cumulonimbus, a thunderstorm cloud, with dark bases no more than 1,000 feet above ground and extending to more than 39,000 feet. Tremendous energy is released by condensation of water vapor in a cumulonimbus. Lightning, thunder and violent tornadoes are associated with them.
Answer: The correct answer is -297 kJ.
Explanation:
To solve this problem, we want to modify each of the equations given to get the equation at the bottom of the photo. To do this, we realize that we need SO2 on the right side of the equation (as a product). This lets us know that we must reverse the first equation. This gives us:
2SO3 —> O2 + 2SO2 (196 kJ)
Remember that we take the opposite of the enthalpy change (reverse the sign) when we reverse the equation.
Now, both equations have double the coefficients that we would like (for example, there is 2S in the second equation when we need only S). This means we should multiply each equation (and their enthalpy changes) by 1/2. This gives us:
SO3 —>1/2O2 + SO2 (98 kJ)
S + 3/2O2 —> SO3 (-395 kJ)
Now, we add the two equations together. Notice that the SO3 in the reactants in the first equation and the SO3 in the products of the second equation cancel. Also note that O2 is present on both sides of the equation, so we must subtract 3/2 - 1/2, giving us a net 1O2 on the left side of the equation.
S + O2 —> SO2
Now, we must add the enthalpies together to get our final answer.
-395 kJ + 98 kJ = -297 kJ
Hope this helps!
Steal; Anion
This is the answer because phosphorous is very electronegative.
Answer:
tri
Explanation:
1-nothing
2-di
3-tri
- Hope that helps! Please let me know if you need further explanation.