Answer:
1.43 (w/w %)
Explanation:
HCl reacts with NH3 as follows:
HCl + NH3 → NH4+ + Cl-
<em>1 mole of HCl reacts per mole of ammonia.</em>
Mass of NH3 is obtained as follows:
<em>Moles HCl:</em>
0.02999L * (0.1068mol / L) = 3.203x10-3 moles HCl = <em>Moles NH3</em>
<em>Mass NH3 in the aliquot:</em>
3.203x10-3 moles NH3 * (17.031g / mol) = 0.0545g.
Mass of sample + water = 22.225g + 75.815g = 98.04g
Dilution factor: 98.04g / 14.842g = 6.6056
That means mass of NH3 in the sample is:
0.0545g * 6.6056 = 0.36g NH3
Weight percent is:
0.36g NH3 / 25.225g * 100
<h3>1.43 (w/w %)</h3>
Barium has a 2+ charge as it is in group 2 in the periodic table and so it has two electrons in its outer shell and chloride has a -1 charge on its chloride ion. So we will need two of the chloride ions as we have a 2+ charge to match the amount of charge on one barium ion- forming barium ion
BaCI2
Answer:
One moves the arm one moves the legs???
Explanation:
Answer:
1.67g/cm3
Explanation:
The formula for density is . The m variable stands for mass and the v variable stands for volume.
The mass of the brown sugar is 10.0g and the volume is 6.0cm3, so we can plug those values into the equation.
Rounded to 3 significant figures, the density of the block of brown sugar is 1.67 g/cm3. If the mass is in grams and the volume is in cm3, the unit for the final answer is (grams per centimetres cubed).