1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dahasolnce [82]
3 years ago
13

Which of the following statements is correct about the gases which participate in photosynthesis?

Chemistry
2 answers:
Sidana [21]3 years ago
7 0
If you look at the equation for photosynthesis, it is:
<span>6CO2 + 6H2O + light energy ---> C6H12O6 + 6O2
</span>
Since CO2 (carbon dioxide) is on the left side of the equation, it is being consumed, or used up. Since O2 (oxygen) is on the right side, it is being produced.

The correct answer is the first one, "<span>Carbon dioxide is used up, and oxygen is produced."</span>
Cloud [144]3 years ago
3 0

Answer:

A

Explanation:

The correct answer is the first one, "Carbon dioxide is used up, and oxygen is produced."

You might be interested in
Four balloons, each with a mass of 10.0 g, are inflated to a volume of 20.0 L, each with a different gas: helium, neon, carbon m
weeeeeb [17]
On temperature 25°C (298,15K) and pressure of 1 atm each gas has same amount of substance:
n(gas) = p·V ÷ R·T = 1 atm · 20L ÷ <span>0,082 L</span>·<span>atm/K</span>·<span>mol </span>· 298,15 K
n(gas) = 0,82 mol.
1) m(He) = 0,82 mol · 4 g/mol = 3,28 g.
d(He) = 10 g + 3,28 g ÷ 20 L = 0,664 g/L.
2) m(Ne) = 0,82 mol · 20,17 g/mol = 16,53 g.
d(Ne) = 26,53 g ÷ 20 L = 1,27 g/L.
3) m(CO) = 0,82 mol ·28 g/mol = 22,96 g.
d(CO) = 32,96 g ÷ 20L = 1,648 g/L.
4) m(NO) = 0,82 mol ·30 g/mol = 24,6 g.
d(NO) = 34,6 g ÷ 20 L = 1,73 g/L.
6 0
3 years ago
Read 2 more answers
Calculate the percent by mass of carbon in CO2 (carbon dioxide). Please show all work.
anygoal [31]
%C= 12/12 + 2·16=0,273=27,3%.
6 0
3 years ago
Name the hardest artificial substance known?
blagie [28]
The hardest material is diamond. The hardest artificial substance would wurtzite boron nitride. That's basically just man-made diamonds.
4 0
3 years ago
Read 2 more answers
Iron and vanadium both have the BCC crystal structure and V forms a substitutional solid solution in Fe for concentrations up to
Bess [88]

Answer:

Explanation:

To find the concentration; let's first compute the average density and the average atomic weight.

For the average density \rho_{avg}; we have:

\rho_{avg} = \dfrac{100}{ \dfrac{C_{Fe} }{\rho_{Fe}} + \dfrac{C_v}{\rho_v} }

The average atomic weight is:

A_{avg} = \dfrac{100}{ \dfrac{C_{Fe} }{A_{Fe}} + \dfrac{C_v}{A_v} }

So; in terms of vanadium, the Concentration of iron is:

C_{Fe} = 100 - C_v

From a unit cell volume V_c

V_c = \dfrac{n A_{avc}}{\rho_{avc} N_A}

where;

N_A = number of Avogadro constant.

SO; replacing V_c with a^3 ; \rho_{avg} with \dfrac{100}{ \dfrac{C_{Fe} }{\rho_{Fe}} + \dfrac{C_v}{\rho_v} } ; A_{avg} with \dfrac{100}{ \dfrac{C_{Fe} }{A_{Fe}} + \dfrac{C_v}{A_v} } and

C_{Fe} with 100-C_v

Then:

a^3 = \dfrac   { n \Big (\dfrac{100}{[(100-C_v)/A_{Fe} ] + [C_v/A_v]} \Big) }    {N_A\Big (\dfrac{100}{[(100-C_v)/\rho_{Fe} ] + [C_v/\rho_v]} \Big)  }

a^3 = \dfrac   { n \Big (\dfrac{100 \times A_{Fe} \times A_v}{[(100-C_v)A_{v} ] + [C_v/A_Fe]} \Big) }    {N_A  \Big (\dfrac{100 \times \rho_{Fe} \times  \rho_v }{[(100-C_v)/\rho_{v} ] + [C_v \rho_{Fe}]} \Big)  }

a^3 = \dfrac   { n \Big (\dfrac{100 \times A_{Fe} \times A_v}{[(100A_{v}-C_vA_{v}) ] + [C_vA_Fe]} \Big) }    {N_A  \Big (\dfrac{100 \times \rho_{Fe} \times  \rho_v }{[(100\rho_{v} - C_v \rho_{v}) ] + [C_v \rho_{Fe}]} \Big)  }

Replacing the values; we have:

(0.289 \times 10^{-7} \ cm)^3 = \dfrac{2 \ atoms/unit \ cell}{6.023 \times 10^{23}} \dfrac{ \dfrac{100 (50.94 \g/mol) (55.84(g/mol)} { 100(50.94 \ g/mol) - C_v(50.94 \ g/mol) + C_v (55.84 \ g/mol)   }   }{ \dfrac{100 (7.84 \ g/cm^3) (6.0 \ g/cm^3 } { 100(6.0 \ g/cm^3) - C_v(6.0 \ g/cm^3) + C_v (7.84 \ g/cm^3)   } }

2.41 \times 10^{-23} = \dfrac{2}{6.023 \times 10^{23} }  \dfrac{ \dfrac{100 *50*55.84}{100*50.94 -50.94 C_v +55.84 C_v} }{\dfrac{100 * 7.84 *6}{600-6C_v +7.84 C_v} }

2.41 \times 10^{-23} (\dfrac{4704}{600+1.84 C_v})=3.2 \times 10^{-24} ( \dfrac{284448.96}{5094 +4.9 C_v})

\mathbf{C_v = 9.1 \ wt\%}

4 0
3 years ago
What is true of a solution of 2.0 m nacl(aq)
MrRa [10]
Is the third one I think
6 0
3 years ago
Read 2 more answers
Other questions:
  • The force of a gas's outward push divided by the area of the walls of the container is the gas's
    15·2 answers
  • Which of these is NOT an example of physical change?
    14·1 answer
  • What alcohol is formed when the alkene is treated with h2o in the presence of h2so4? qs14?
    9·1 answer
  • Milk of magnesia is a base. What happens when you drink milk of magnesia for an upset stomach?
    5·2 answers
  • 2 questions:
    6·1 answer
  • Why does the reaction rate decrease as the reaction progresses?
    10·2 answers
  • How does the human body build the complex<br> molecules it needs?
    11·2 answers
  • A substance joined by this type of bond has a low melting point
    6·2 answers
  • Difference between desirable changes and undesirable changes​
    8·1 answer
  • How many grams of hydrogen are in 46 g of CH40?<br>​
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!