Answer: k = 5.4kg/m
where m is the mass of the crate.
Explanation:
The force of kinetic friction is described by the equation:
Ff = k*N
in the opposite direction in wich the object moves, where k is the coefficient of kinetic friction and N is the normal force, that is equal to the weight of the crate. N = m*g where m is the mass of the crate and g is the gravitational acceleration.
If the crate keeps moving with constant velocity, this means that the crate is not accelerating so there is no net force applied on the crate. Then the friction force should be equal in magnitude to the horizontal force of 53N (but with different sign)
then we have:
k*m*g = 53N
k*m = 53N/9.8m/s^2 = 5.4kg
k = 5.4kg/m
In the question we do not have the mass of the crate, so you must put the value in that equation to get the value of k.
Answer:
Geology Notes
1 Veryovkina Cave 2212[1] 13.5 km (8.4 mi)[1] Abkhazia / Georgia 43°23′52″N 40°21′37″E.
Answer: negative acceleration
Explanation:
Acceleration is speeding up, the ball is slowing down making it negative acceleration
I think the correct answer from the choices listed above is option B. When calculating the power bill, power companies use kilowatt-hours. This unit is a derived unit of energy equal to 3.6 MJ. If energy is being transmitted or used at a constant rate (power) over a period of time, the total energy in kilowatt-hours is the product of the power in kilowatts and the time.