Answer:
x ’= 1,735 m, measured from the far left
Explanation:
For the system to be in equilibrium, the law of rotational equilibrium must be fulfilled.
Let's fix a reference system located at the point of rotation and that the anticlockwise rotations have been positive
They tell us that we have a mass (m1) on the left side and another mass (M2) on the right side,
the mass that is at the left end x = 1.2 m measured from the pivot point, the mass of the right side is at a distance x and the weight of the body that is located at the geometric center of the bar
x_{cm} = 1.2 -1
x_ {cm} = 0.2 m
Σ τ = 0
w₁ 1.2 + mg 0.2 - W₂ x = 0
x =
x = 
let's calculate
x =
2.9 1.2 + 4 0.2 / 8
x = 0.535 m
measured from the pivot point
measured from the far left is
x’= 1,2 + x
x'= 1.2 + 0.535
x ’= 1,735 m
Eight electrons surrounding each non-hydrogen atom is the optimal electronic arrangement for covalent molecules because it is needed to achieve an octet structure and is necessary to fill both the s and p subshells of electrons.
<h3>What is Covalent bonding?</h3>
This is the type of bonding which involves the sharing of electrons between atoms of an element.
This is done to achieve an octet configuration thereby making them stable and less reactive thereby making it the most appropriate choice.
Read more about Covalent bonding here brainly.com/question/3447218
#SPJ4
The velocities and the speed build a triangle, where the 1.7 m/s are the hypotenuse and the x-velocity and y-velocity are the other sides.
<span>So the x-velocity is: speed*cos(angle) </span>
<span>now plug in </span>
<span>x=1.7 m/s * cos(18.5)=1.597 m/s </span>
The frequency of the wave is 4 Hz
The formula that links voltage (V), resistance (R) and current intensity (I) is

Solve this formula for I to get

Plug your values for V and R and you'll get the current.