Answer: Distance is 14.6
Step-by-step explanation:



add it all together

Square 212

round to the nearest tenth
=14.6
PLEASE MARK BRAINLIEST
1 and 2 are equations and 3 is a solution
Circumcenter is where three perpendicular bisectors intersect and incenter is where the three angle bisectors intersect.
Way to find them and the theorems are mentioned below.
Step-by-step explanation:
To find Incenter :
Construct angle bisectors of each angle of the triangle and their intersection point gives the incenter.
To find Circumcenter:
Construct perpendicular bisectors of all sides of triangle and their intersection point gives the circumcenter.
Circumcenter Theorem: It states that the vertices of a triangle are equidistant from the circumcenter.
Incenter Theorem: It states that the incenter is equidistant from the sides of the triangle.
Answer:
B (5, 13)
Step-by-step explanation:
9x + 4y = 97
9x + 6y = 123
To solve by elimination, we want to <em>eliminate</em> a variable. To do this, we must make one variable cancel out.
First, we can see that both equations have 9x. To cancel out x, we must make <em>one</em> of the 9x's <em>negative</em>. To do this, multiply <em>each term</em> in the equation by -1.
-1(9x + 6y = 123)
-9x - 6y = -123
This is one of your equations. Set it up with your other given equation.
9x + 4y = 97
-9x - 6y = -123
Imagine this is one equation. Since every term is negative, you will be subtracting each term.
9x + 4y = 97
-9x - 6y = -123
___________
0x -2y = -26
-2y = -26
To isolate y further, divide both sides by -2.
y = 13
Now, to find x, plug y back into one of the original equations.
9x + 4(13) = 97
Multiply.
9x + 52 = 97
Subtract.
9x = 45
Divide.
x = 5
Check your answer by plugging both variables into the equation you have not used yet.
-9(5) - 6(13) = -123
-45 - 78 = -123
-123 = -123
Your answer is correct!
(5, 13)
Hope this helps!
Answer:
Step-by-step explanation:-16x^2 + 24x + 16 = 0.
A. Divide by 8:
-2x^2 + 3x + 2 = 0, A*C = -2*2 = -4 = -1 * 4. Sum = -1 + 4 = 3 = B, -2x^2 + (-x+4x) + 2 = 0,
(-2x^2-x) + (4x+2) = 0,
-x(2x+1) + 2(2x+1) = 0,
(2x+1)(-x+2) = 0, 2x+1 = 0, X = -1/2. -x+2 = 0, X = 2.
X-intercepts: (-1/2,0), (2,0).
B. Since the coefficient of x^2 is negative, the parabola opens downward. Therefore, the vertex is a maximum.
Locate the vertex: h = Xv = -B/2A = -24/-32 = 3/4, Plug 3/4 into the given Eq to find k(Yv). K = -16(3/4)^2 + 16(3/4) + 16 = 19. V(h,k) = V(3/4,19).
C. Choose 3 points above and below the vertex for graphing. Include the points calculated in part A which shows where the graph crosses the x-axis.