Answer:
1.7×10^5 ms-1
Explanation:
From
qE= qvB
q= charge on the electron
E = electric field
v= velocity
B= magnetic field
E= vB
v= E/B= 110×10^3/0.6
v= 1.7×10^5 ms-1
Answer:

Explanation:
Net force by which man push the lawn mower is given as

now it is given that 37% of this force is vertically downwards
so we will have


now we also know that

here we have


Now work done by this force to move the lawn mower is given as



Electrons have a negative charge, so if you give away electrons, you give away negative charge, thus ending with a positive charge.
Answer:
50 W
Explanation:
<h3>
<u>Given :</u></h3>
- Force applied = 100 N
- Distance covered = 5 metres
- Time = 10 seconds
<h3>
<u>To find :</u></h3>
Power
<h3>
<u>Solution :</u></h3>
For calculating power, we first need to know about the work done.

Now, substituting values in the above formula;
Work = 100 × 5
= 500 Nm or 500 J
We know that,

Substituting values in above formula;
Power = 500/ 10
= 50 Nm/s or 50 W
Hence, power = 50 W .
<h2>
Answer:</h2>
143μH
<h2>
Explanation:</h2>
The inductance (L) of a coil wire (e.g solenoid) is given by;
L = μ₀N²A / l --------------(i)
Where;
l = the length of the solenoid
A = cross-sectional area of the solenoid
N= number of turns of the solenoid
μ₀ = permeability of free space = 4π x 10⁻⁷ N/A²
<em>From the question;</em>
N = 183 turns
l = 2.09cm = 0.0209m
diameter, d = 9.49mm = 0.00949m
<em>But;</em>
A = π d² / 4 [Take π = 3.142 and substitute d = 0.00949m]
A = 3.142 x 0.00949² / 4
A = 7.1 x 10⁻⁵m²
<em>Substitute these values into equation (i) as follows;</em>
L = 4π x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209 [Take π = 3.142]
L = 4(3.142) x 10⁻⁷ x 183² x 7.1 x 10⁻⁵ / 0.0209
L = 143 x 10⁻⁶ H
L = 143 μH
Therefore the inductance in microhenrys of the Tarik's solenoid is 143