Answer:
D. Top is emission; bottom absorption.
Explanation:
Emission and spectrum of elements are due to the element absorbing or emitting wavelength of e-m energy. Elementary particles of elements can absorb energy from a ground state to enter an excited state, creating an absorption spectrum, or they can lose energy and fall back to a lower energy state, creating an emission spectrum. A simple rule to differentiate between an emission and an absorption spectrum is that: "all absorbed wavelength is emitted, but not all emitted wavelength is absorbed."
From the image, the lines indicates wavelengths. We can see that all of the wavelengths of the bottom absorption spectrum coincides with some of the wavelength of the upper emission wavelengths.
Answer: 
Explanation:
We are told both planets describe a circular orbit around the star S. So, let's approach this problem begining with the angular velocity
of the planet P1 with a period
:
(1)
Where:
is the velocity of planet P1
is the radius of the orbit of planet P1
Finding
:
(2)
(3)
(4)
On the other hand, we know the gravitational force
between the star S with mass
and the planet P1 with mass
is:
(5)
Where
is the Gravitational Constant and its value is 
In addition, the centripetal force
exerted on the planet is:
(6)
Assuming this system is in equilibrium:
(7)
Substituting (5) and (6) in (7):
(8)
Finding
:
(9)
(10)
Finally:
(11) This is the mass of the star S
Answer:
0.958 m
Explanation:
So the total mass of the system is
M = 1.93 + 2.95 + 2.41 + 3.99 = 11.28 kg
let y be the distance from the center of mass to the origin. With the reference to the origin then we have the following equation



So the center of mass is 0.958 m from the origin
Answer:
<em>216 J</em>
Explanation:
h = 1.8
a = 9.8
m = 12.2
<em>GPE</em> = <em>HAM</em> = 216