Answer:

Explanation:
<u>The total momentum of a system is defined by:</u>

Where,
is the total momentum or it could be expressed also as
.
and
represents the masses of the objects interacting in the system.
and
are the velocities of the objects of the system.
<em>Remember: </em><em>The momentum is a fundamental physical magnitude of vector type.</em>
We have:


We are going to take the east side as positive, and the west side as negative. Then the velocity of the car B, has to be <u>negative</u>. It goes in a different direction from car A.

Then the total momentum of the system is:

Answer:
The work is calculated by multiplying the force by the amount of movement of an object (W = F * d). A force of 10 newtons, that moves an object 3 meters, does 30 n-m of work. A newton-meter is the same thing as a joule, so the units for work are the same as those for energy – joules.
Explanation:
To solve this problem we will apply the concepts related to the balance of forces. We will decompose the forces in the vertical and horizontal sense, and at the same time, we will perform summation of torques to eliminate some variables and obtain a system of equations that allow us to obtain the angle.
The forces in the vertical direction would be,



The forces in the horizontal direction would be,



The sum of Torques at equilibrium,




The maximum friction force would be equivalent to the coefficient of friction by the person, but at the same time to the expression previously found, therefore


Replacing,


Therefore the minimum angle that the person can reach is 46.9°
Answer:
29.96m/s
Explanation:
Given parameters:
Initial speed = 25.5m/s
Acceleration = 1.94m/s²
Time = 2.3s
Unknown:
Final speed of the car = ?
Solution:
To solve this problem, we are going to apply the right motion equation:
v = u + at
v is the final speed
u is the initial speed
a is the acceleration
t is the time taken
Now insert the parameters and solve;
v = 25.5 + (1.94 x 2.3) = 29.96m/s