The answer for this is b 3.500.000j
A circle has a revolution of 360°. Since there are 12 hour markings, each hour interval has an angle of 30°. In radians, that would be equal to π/6 radians. So, in every 1 hour that passes, it covers π/6 of an angle. So, the angular velocity denoted as ω is π/6 ÷ 1 hour = π/6 rad/h. We can compute the average linear velocity, v, from the relationship:
v = rω, where r is the radius of the circle which is the length of the hour hand
v = (2.4 cm)(π/6 rad/h)
v = 1.257 cm/hour
Therefore, the average velocity is 1.257 cm per hour.
For the average acceleration, it is equal to zero. The hands of the clock move at a constant velocity. Since acceleration is the change of velocity per unit time, there is no change of velocity because it's constant. That's why it is zero.
Answer:
The kinetic energy is: 50[J]
Explanation:
The ball is having a potential energy of 100 [J], therefore
PE = [J]
The elevation is 10 [m], and at this point the ball is having only potential energy, the kinetic energy is zero.
![E_{p} =m*g*h\\where:\\g= gravity[m/s^{2} ]\\m = mass [kg]\\m= \frac{E_{p} }{g*h}\\ m= \frac{100}{9.81*10}\\\\m= 1.01[kg]\\\\](https://tex.z-dn.net/?f=E_%7Bp%7D%20%3Dm%2Ag%2Ah%5C%5Cwhere%3A%5C%5Cg%3D%20gravity%5Bm%2Fs%5E%7B2%7D%20%5D%5C%5Cm%20%3D%20mass%20%5Bkg%5D%5C%5Cm%3D%20%5Cfrac%7BE_%7Bp%7D%20%7D%7Bg%2Ah%7D%5C%5C%20m%3D%20%5Cfrac%7B100%7D%7B9.81%2A10%7D%5C%5C%5C%5Cm%3D%201.01%5Bkg%5D%5C%5C%5C%5C)
In the moment when the ball starts to fall, it will lose potential energy and the potential energy will be transforme in kinetic energy.
When the elevation is 5 [m], we have a potential energy of
![P_{e} =m*g*h\\P_{e} =1.01*9.81*5\\\\P_{e} = 50 [J]\\](https://tex.z-dn.net/?f=P_%7Be%7D%20%3Dm%2Ag%2Ah%5C%5CP_%7Be%7D%20%3D1.01%2A9.81%2A5%5C%5C%5C%5CP_%7Be%7D%20%3D%2050%20%5BJ%5D%5C%5C)
This energy is equal to the kinetic energy, therefore
Ke= 50 [J]
Force required to move a block is 1.615 N
Given:
mass of block = m = 150 pounds = 68 kg
distance = d = 5 ft = 1.52 metres
time = t = 8 sec
To Find:
force required to move the block
Solution: Force is defined as product of mass and acceleration and it's unit is N or Newton.
Velocity = displacement/ time = 1.52 / 8 = 0.19 m/s
Acceleration = velocity/time = 0.19/8 =
0.023 m/s^2
Force = mass x acceleration = 68x0.023 = 1.615 N
Hence, force required to move the block is 1.615 N
Learn more about Force here:
brainly.com/question/12970081
#SPJ4