Answer:
9.6J+88.2J=97.8J
Explanation:
Here the velocity of the seagull is given,mass is given and its height.
We have to find its mechanical energy my friend.
Mechanical energy=kinetic energy + potential energy.
First we will find kinetic energy.
For calculating kinetic energy we need mass and velocity,which are given here.
So, Ek=

So by substituting the values we get 9.6J.
Now we find the potential energy which is mgh.
By substituting the values we get 88.2J.
Then we add both of those and get 97.8J
I hope this satisfies you and make sure you contact me if it doesn't
Answer:
Therefore the the highest frequency is 620Hz and lowest frequency is 580Hz
Explanation:
Given data
Source Frequency fs=600Hz
Length r=1.0m
RPM=100 rpm
The speed of the generator is calculated as:

Substitute the given values

For approaching generator the frequency is calculated as:

On the other hand,for the receding generator,Doppler's effect is expressed as:

Therefore the the highest frequency is 620Hz and lowest frequency is 580Hz
Answer:
Fc = 19.2 N
Explanation:
In this case, the force of the Honda over the rock, is a centripetal force. Then, you have:

m: mass of the rock = 600g = 0.6 kg
v: tangential velocity of the Honda = 4m/s
r: radius of the Honda = 50cm = 0.5m
You replace the values of m, r and v in the equation for Fc:

hence, the force has a magnitude of 19.2 N
If the rock would have more mass the centripetal force would be higher
force=mass × acceleration
mass=force ÷ acceleration
acceleration=force ÷ mass