According to the Law of Universal Gravitation, the gravitational force is directly proportional to the mass, and inversely proportional to the distance. In this problem, let's assume the celestial bodies to be restricted to the planets and the Sun. Since the distance is specified, the other factor would be the mass. Among all the celestial bodies, the Sun is the most massive. So, the Sun would cause the strongest gravitational pull to the satellite.
<span>To relate or measure the by the quantity of something, not against the quantity</span>
Answer:
The power of the corrective lenses is 3.162 D.
Explanation:
Given that,
Object distance = 70 cm
Image distance = 62 cm
Distance between eyes and glasses = 2.5 cm
Eyeglasses made of diverging corrective lenses can help her to see the apple clearly
So now ,
Object distance from glass =70-2.5 = 67.5 cm
Image distance from glass = 62-2.5 = 59.5 cm
We need to calculate the focal length
Using formula for focal length
We need to calculate the power of lens
Using formula of power
Negative sign shows the lens is diverging.
Hence, The power of the corrective lenses is 3.162 D.
The acceleration due to gravity serves as the centripetal acceleration of the objects that orbits the Earth. The centripetal acceleration due to gravity is calculated through the equation,
a = v²/r
where v is the speed and r is the radius. Substituting the known values to the equation,
9.8 m/s² = (420 m/s)² / r
The value of r from the equation is 18000 m or equal to 18 km.
<em>Answer: 18 km</em>
C.) Laser. the light from the laser reflects off the shiny surface as the CD rotates