<span>First divide the ionization energy by Avogadro's number to get the energy per atom of potassium;
</span>419 kj/mol / 6.023 x 10²³
= 4.19 x 10⁵ / 6.023 x 10²³ = 6.96 x 10⁻¹⁹
E = hc/λ
where lambda (λ<span>) is the wavelength, h is Planck's constant, c is the speed of light
</span>E = 6.96 x 10⁻¹⁹ j/atom<span>
h =</span>6.63x10⁻³⁴<span> Js
c = 3 x 10</span>⁸ m/s
λ = ?
λ = hc/E = (6.63x10⁻³⁴ x 3 x 10⁸ ) / 6.96 x 10⁻¹⁹ = 285.8nm = 286nm
<span>The longest wavelength of light capable of this ionization is 286nm.</span>
You would have to look for the mass of the sample and the volume of the sample.
Answer: 1/2 of an answer is zero
Explanation:
Bold or italicize to highlight important points in your answer.
<span>(6.36x10^25)/(6.02*10^23) is approximately 105.6 moles</span>