Answer:
4.1 moles
Explanation:
Applying
PV = nRT................ equation 1
Where P = pressure, V = volume, n = number of moles, R = molar gas constant, T = Temperature.
make n the subject of the equation
n = PV/RT.............. Equation 2
From the question,
Given: V = 35 L , P = 2.8 atm, T = 15 °C = (15+273) = 288 K, R = 0.083 L.atm/K.mol
Substitute these values into equation 2
n = (35×2.8)/(0.083×288)
n = 4.1 moles
Answer:
a. Minimum 1.70 V
b. There is no maximum.
Explanation:
We can solve this question by remembering that the cell potential is given by the formula
ε⁰ cell = ε⁰ reduction - ε⁰ oxidation
Now the problem states the cell must provide at least 0.9 V and that the reduction potential of the oxidized species 0.80 V, thus
ε⁰ reduction - ε⁰ oxidation ≥ ε⁰ cell
Since ε⁰ oxidation is by definition the negative of ε⁰ reduction , we have
ε⁰ reduction - ( 0.80 V ) ≥ 0.90 V
⇒ ε⁰ reduction ≥ 1.70 V
Therefore,
(a) The minimum standard reduction potential is 1.70 V
(b) There is no maximum standard reduction potential since it is stated in the question that we want to have a cell that provides at leat 0.9 V
They move because of convection currents in the mantle
<span>Let x = amt of distilled water
:
A simple equation
.25(16) = .10(x+16)
4 = .10x + 1.6
4 - 1.6 = .1x
2.4 = .1x
x = 2.4/0.1
x = 24 oz of distilled water
:
:
Prove this by seeing the amt of antiseptic is the same (only the % changes)
.25(16) = .10(24+16)
4 = .1(40)
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>