1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mafiozo [28]
3 years ago
14

Suppose an ice hockey puck strikes a hockey stick that lies flat on the ice and is free to move in any direction. Which

Physics
1 answer:
Rudik [331]3 years ago
5 0

Answer:

Linear momentum

Explanation:

The most likely conservation candidate is the linear momentum. The law of momentum conservation states that the sum of momenta before and after an (elastic or inelastic) collision will remain constant.

The kinetic energy is another possible, but less likely suspect. It is conserved in elastic collisions (i.e., those with no kinetic energy loss), but we are not told this collision is assumed elastic. In fact the real setup would be nowhere close to an elastic collision, as the stick lies on ice, which hasn't be zambonied for an entire period of rough skating, there's rough surface and the stick's shaft is also slightly stuck to the surface through frost. So when the puck hits the stick, a portion of its kinetic energy is spent to unstick the stick and get it moving. And so, kinetic energy is not conserved.

Angular momentum is not applicable with the puck-stick scenario.  

You might be interested in
A car is moving at 34mi/hr. If the car travels for 6hours how many miles (mi) did the car travel? Make sure you include the prop
Dmitrij [34]

the car travels 34 mi in one hour.

then, in 6 hours car travels

34 x 6 mi

= 204 mi

5 0
3 years ago
Read 2 more answers
A person who weighs 509,45 N empties her lungs as much as
Masja [62]

Answer:

The weight of the girl = 1045.86 kg/m³

Explanation:

Density: This can be defined as the ratio of the mass of a body to the volume of that body. The S.I unit of density is kg/m³.

From Archimedes principle,

R.d = Density of the person/Density of water = Weight of the person in air/Upthrust.

⇒ D₁/D₂ = W/U............................... Equation 1.

Where D₁ = Density of the person, D₂ = Density of water, W = Weight of the person in air, U = Upthrust in water.

Making D₁ the subject of the equation,

D₁ = D₂(W/U)................................... Equation 2

<em>Given: D₂ = 1000 kg/m³ , W = 509.45 N, U = lost in weight = weight in air - weight in water = 509.45 - 22.34 = 487.11 N</em>

<em>Substituting these values into equation 2</em>

D₁ = 1000(509.45/487.11)

D₁ = 1045.86 kg/m³

Thus the weight of the girl = 1045.86 kg/m³

<em></em>

7 0
3 years ago
A 2.1 kg block is dropped from rest from a height of 5.5 m above the top of the spring. When the block is momentarily at rest, t
ella [17]

Answer:

The speed of the block is 8.2 m/s

Explanation:

Given;

mass of block, m = 2.1 kg

height above the top of the spring, h = 5.5 m

First, we determine the spring constant based on the principle of conservation of potential energy

¹/₂Kx² = mg(h +x)

¹/₂K(0.25)² = 2.1 x 9.8(5.5 +0.25)

0.03125K = 118.335

K = 118.335 / 0.03125

K = 3786.72 N/m

Total energy stored in the block at rest is only potential energy given as:

E = U = mgh

U = 2.1 x 9.8 x 5.5 = 113.19 J

Work done in compressing the spring to 15.0 cm:

W = ¹/₂Kx² = ¹/₂ (3786.72)(0.15)² = 42.6 J

This is equal to elastic potential energy stored in the spring,

Then, kinetic energy of the spring is given as:

K.E = E - W

K.E = 113.19 J - 42.6 J

K.E = 70.59 J

To determine the speed of the block due to this energy:

KE =  ¹/₂mv²

70.59 =  ¹/₂ x 2.1 x v²

70.59 = 1.05v²

v² = 70.59 / 1.05

v² = 67.229

v = √67.229

v = 8.2 m/s

8 0
3 years ago
Read 2 more answers
According to the Natural Resources Defense Council, what is the largest contributor to land pollution?
Anika [276]

Answer: Food

Explanation:

7 0
2 years ago
For a damped simple harmonic oscillator, the block has a mass of 1.2 kg and the spring constant is 9.8 N/m. The damping force is
ArbitrLikvidat [17]

Answer:

a) t=24s

b) number of oscillations= 11

Explanation:

In case of a damped simple harmonic oscillator the equation of motion is

m(d²x/dt²)+b(dx/dt)+kx=0

Therefore on solving the above differential equation we get,

x(t)=A₀e^{\frac{-bt}{2m}}cos(w't+\phi)=A(t)cos(w't+\phi)

where A(t)=A₀e^{\frac{-bt}{2m}}

 A₀ is the amplitude at t=0 and

w' is the angular frequency of damped SHM, which is given by,

w'=\sqrt{\frac{k}{m}-\frac{b^{2}}{4m^{2}} }

Now coming to the problem,

Given: m=1.2 kg

           k=9.8 N/m

           b=210 g/s= 0.21 kg/s

           A₀=13 cm

a) A(t)=A₀/8

⇒A₀e^{\frac{-bt}{2m}} =A₀/8

⇒e^{\frac{bt}{2m}}=8

applying logarithm on both sides

⇒\frac{bt}{2m}=ln(8)

⇒t=\frac{2m*ln(8)}{b}

substituting the values

t=\frac{2*1.2*ln(8)}{0.21}=24s(approx)

b) w'=\sqrt{\frac{k}{m}-\frac{b^{2}}{4m^{2}} }

w'=\sqrt{\frac{9.8}{1.2}-\frac{0.21^{2}}{4*1.2^{2}}}=2.86s^{-1}

T'=\frac{2\pi}{w'}, where T' is time period of damped SHM

⇒T'=\frac{2\pi}{2.86}=2.2s

let n be number of oscillations made

then, nT'=t

⇒n=\frac{24}{2.2}=11(approx)

8 0
3 years ago
Other questions:
  • The unit light-year is a measure of
    9·2 answers
  • Which of the following is the largest disadvantage of hydropower
    14·1 answer
  • A uniform electric field is pointing in x direction. The magnitude of the electric field is 10 N/C. The filed makes an angle of
    8·1 answer
  • Solutions to environmental problems ________.
    14·1 answer
  • What are the three different types of muscle tissue?
    9·1 answer
  • A man of mass 80kg climbs up 15 steps each 25cm high in 7.5 seconds. Calculate the power that the man develops ​
    13·1 answer
  • (a) How much gravitational potential energy (relative to the ground on which it is built) is stored in the Great Pyramid of Cheo
    12·1 answer
  • What does KE mean? *100 pts*
    12·2 answers
  • Ken Griffey, Jr's warehouse shot in the 1933 home run derby travelled 93 feet per second for 5 seconds. How far did he hit the b
    15·1 answer
  • two masses 3 kg and 5 kg are connected by a string. a force of 20 n is applied to the 3 kg mass. what is the tension on the stri
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!