1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vsevolod [243]
3 years ago
12

Fiona read a total of 8 books over 2 months. If Fiona has read 12 books so far, how many months has she been with her book club?

Solve using unit rates.
Mathematics
1 answer:
kozerog [31]3 years ago
4 0
To find the number of books she can read in one month, we do 8/2 to find that she can read 4 books per month.

Then we can do 12/4 to see how many months it took to read 12 books 
12/4=3 months

Hope this helps
You might be interested in
Which mathematical statement represents “17 more than a number is 26”?
Paladinen [302]

17 + x = 26

17 +n = 26

n + 17 = 26


 something like those, you didn't give options to choose from.

8 0
3 years ago
Read 2 more answers
Kiara desea contratar el servicio de una línea telefónica con internet para realizar sus clases virtuales. Si el costo de una lí
ArbitrLikvidat [17]

a) Kiara ha adquirido una línea de telefonía móvil con internet a un Coste Fijo de 10 soles y un Tasa de Consumo de 1,5 soles por hora consumida.

b) El Coste total por 48 horas de consumo de la línea telefónica con internet es 82 soles.

a) Nota - Puesto que la ecuación que describe el Coste ya existe en el enunciado, entonces se entiende el verbo <em>"Expresa"</em> como <em>"Describa en sus propias palabras"</em>.

Como puede apreciarse el Coste de la línea telefónica móvil aumenta linealmente con el Tiempo de consumo por parte del usuario. En consecuencia, la función de Coste queda definida como sigue:

C(t) = C_{o} + r\cdot t (1)

Donde:

  • C_{o} - Coste fijo, en soles.
  • r - Tasa de consumo, en soles por hora.

Entonces, tenemos que Kiara ha adquirido una línea de telefonía móvil con internet a un Coste Fijo de 10 soles y un Tasa de Consumo de 1,5 soles por hora consumida.

b) Una característica de las Funciones Lineales es que tanto su Dominio como Rango comprenden al Conjunto de todos los Números Reales, al ser de Pendiente constante esta Función.

Por tanto, el Dominio y el Rango de la Función en cuestión es el Conjunto de todos los Números Reales.

c) Si sabemos que C_{o} = 10, r = 1,5 y t = 48, entonces el Coste Total por concepto de 48 horas de consumo es:

C(48) = 10 + 1,5\cdot (48)

C(48) = 82

El Coste total por 48 horas de consumo de la línea telefónica con internet es 82 soles.

Invitamos a ver este problema sobre Costes: brainly.com/question/15723794

7 0
3 years ago
Brainliest offered<br><br> {[(3x4)+18]+[(6x7)-27]}divided by 5<br> show work
In-s [12.5K]
3t3t3 =9 5t5t5 = 15 add to of the products and get 105
8 0
3 years ago
Please help me solve -6 = 14 - z/3
dybincka [34]
Solve. -6 = 14 - z/3Subtract 14 from both sides

-20 = -z/3

Multiply -3 by both sides to get rid of the negative and 3 with the z.

z= 60
6 0
3 years ago
Read 2 more answers
Given: △ABC, AB=5sqrt2 <br> m∠A=45°, m∠C=30°<br> Find: BC and AC
Marysya12 [62]

BC is 10 units and AC is 5+5\sqrt{3} units

Step-by-step explanation:

Let us revise the sine rule

In ΔABC:

  • \frac{AB}{sin(C)}=\frac{BC}{sin(A)}=\frac{AC}{sin(B)}
  • AB is opposite to ∠C
  • BC is opposite to ∠A
  • AC is opposite to ∠B

Let us use this rule to solve the problem

In ΔABC:

∵ m∠A = 45°

∵ m∠C = 30°

- The sum of measures of the interior angles of a triangle is 180°

∵ m∠A + m∠B + m∠C = 180

∴ 45 + m∠B + 30 = 180

- Add the like terms

∴ m∠B + 75 = 180

- Subtract 75 from both sides

∴ m∠B = 105°

∵ \frac{AB}{sin(C)}=\frac{BC}{sin(A)}

∵ AB = 5\sqrt{2}

- Substitute AB and the 3 angles in the rule above

∴ \frac{5\sqrt{2}}{sin(30)}=\frac{BC}{sin(45)}

- By using cross multiplication

∴ (BC) × sin(30) = 5\sqrt{2} × sin(45)

∵ sin(30) = 0.5 and sin(45) = \frac{1}{\sqrt{2}}

∴ 0.5 (BC) = 5

- Divide both sides by 0.5

∴ BC = 10 units

∵ \frac{AB}{sin(C)}=\frac{AC}{sin(B)}

- Substitute AB and the 3 angles in the rule above

∴ \frac{5\sqrt{2}}{sin(30)}=\frac{AC}{sin(105)}

- By using cross multiplication

∴ (AC) × sin(30) = 5\sqrt{2} × sin(105)

∵ sin(105) = \frac{\sqrt{6}+\sqrt{2}}{4}

∴ 0.5 (AC) = \frac{5+5\sqrt{3}}{2}

- Divide both sides by 0.5

∴ AC = 5+5\sqrt{3} units

BC is 10 units and AC is 5+5\sqrt{3} units

Learn more:

You can learn more about the sine rule in brainly.com/question/12985572

#LearnwithBrainly

6 0
3 years ago
Other questions:
  • A box contains 14 candy bars of equal weight the weight of the empty box is 10 ounces and the total weight of the box and the ca
    14·1 answer
  • What is the cube root of b^27
    8·1 answer
  • What is the parent function of<br> f(x)=2/5(-x-5)^5 +2
    6·1 answer
  • In △ABC, point M is the midpoint of AB , point D∈ AC so that AD:DC=2:5. If AABC=56 yd2, find ABMC, AAMD, and ACMD.
    6·1 answer
  • What is the product of a+3 and -2a2+15a+6b2
    6·2 answers
  • X <br> 38°<br> 750<br> x= -<br> degrees
    15·1 answer
  • PLEASE HELP
    11·1 answer
  • X +1 = -5<br> Graphing linear
    9·2 answers
  • Find the slope of the line through the pair of points (-6,-5) and (-2,6)
    7·2 answers
  • Write the equation of the line with the given slope and y-intercept
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!