<span>Hitting can be broken down into three segments; SEE, REACT, SWING. You watch the ball in the pitcher's hand during the windup and you watch the ball leave the pitcher's hand when it is thrown and you watch the spin of the ball as it comes towards the plate. That is SEE. You determine what the pitch is (fastball, curveball, etc.), you determine where the ball is going to go and you determine whether it is headed towards an area that you think you can get good wood on it. That is REACT. You swing if you like the pitch or don't swing if you don't like the pitch. That is SWING. It doesn't make any difference whether you are playing with a tennis ball or a golf ball or a baseball. The theory and mechanics are the same. So, to answer your question I would say the more you practice the better you will be, regardless of the type of ball you use to practice with.</span>
Answer: h = 0.52m
Explanation:
Using the equation of out flow;
A1 × V1 = A2 ×V2
Where A1 = area of the first nozzle
A2 = area of the second nozzle
V1= velocity of flow out from the first nozzle
V2 = velocity of flow out from 2nd nozzle
But AV= area of nozzle × velocity of water = volume of water per second(m³/s).
Now we can set A×V = Area of nozzle × height of rise.
Henceb A1× h1 = A2 × h2 ( note the time cancel on both sides)
D1 = 20mm= 0.02m; h1 = 0.13m
D2 = 10mm = 0.01m; h2= ?
h2 = π(D1/2)²× h1 /π(D2/2)²
h2 = (0.02/2)² × 0.13/(0.01/2)²
= (0.01)² ×0.13 /(0.005)²
= 1.3 × 10^-5/(5 × 10^-3)²
= 1.3 × 10^-5/25 × 10^-6
= (1.3/25) 10^-5 × 10^6
= 0.052× 10
= 0.52m
Answer:
C
Explanation:
The total kinetic energy is the sum of the kinetic energy in the center of mass (Rotational Kinetic energy) plus the kinetic energy of the center of mass( Translational Kinetic Energy).
The formula
is applicable only when
The moment of inertia must be taken about an axis through the center of mass.
An eclipse i believe is the answer?