Answer:
An increase in pressure
Explanation:
The ideal gas law states that:

where
p is the gas pressure
V is the volume
n is the number of moles
R is the gas constant
T is the temperature of the gas
in the equation, n and R are constant. For a gas kept at constant volume, V is constant as well. Therefore, from the formula we see that if the temperature (T) is increase, the pressure (p) must increase as well.
The final temperature of the seawater-deck system is 990°C.
<h3>What is heat?</h3>
The increment in temperature adds up the thermal energy into the object. This energy is Heat energy.
The deck of a small ship reaches a temperature Ti= 48.17°C seawater on the deck to cool it down. During the cooling, heat Q =3,710,000 J are transferred to the seawater from the deck. Specific heat of seawater= 3,930 J/kg°C.
Suppose for 1 kg of sea water, the heat transferred from the system is given by
3,710,000 = 1 x 3,930 x (T - 48.17)
T = 990°C to the nearest tenth.
The final temperature of the seawater-deck system is 990°C.
Learn more about heat.
brainly.com/question/13860901
#SPJ1
Technically, I can't answer the question, because you won't
let me see the picture that goes along with it and is a part of it.
But I'm familiar with the set-up, have dealt with the question before,
and I can answer it from my previous experience and general knowledge.
If there is 500g of mass inside the jar when you lower it over
the candle, then there will be 500g of mass at any time after that,
forever, or until you pick up the jar and take some mass out or put
some more in. It doesn't matter how long you wait. It also doesn't
matter whether or not the candle is burning, whether or not the sun
is shining on the jar, or whether somebody comes along and spray-paints
the outside of the jar with black paint. Matter is not created or destroyed.
Whatever mass was inside when the jar got closed stays in there.
Explanation:
Liquids also exert pressure in all directions on the walls of the container they are stored in. We see water coming out from leaking pipes and taps. ... Gases (Air) also exert pressure in all directions