Answer:
The Right Hand Rule, illustrated at left, simply shows how a current-carrying wire generates a magnetic field. ... The Left Hand Rule shows what happens when an electrical current enters a magnetic field. You need to contort your hand in an unnatural position for this rule, illustrated below
Answer:
a) -3.267 m/s
b) 2.227 m/s
Explanation:
As per the conservation of momentum
m1v1 + m2v2=0
m1= mass of log
m2 = mass of lumber jack
v1 = velocity of log
v2 = velocity of lumber jack
a) Velocity of first log
m/s
b) m1v1 + m2v2 = m3v3
Velocity of log
= 
Answer:
c. an increase in the length of the rope.
Answer:
<em>D. The total force on the particle with charge q is perpendicular to the bottom of the triangle.</em>
Explanation:
The image is shown below.
The force on the particle with charge q due to each charge Q = 
we designate this force as N
Since the charges form an equilateral triangle, then, the forces due to each particle with charge Q on the particle with charge q act at an angle of 60° below the horizontal x-axis.
Resolving the forces on the particle, we have
for the x-component
= N cosine 60° + (-N cosine 60°) = 0
for the y-component
= -f sine 60° + (-f sine 60) = -2N sine 60° = -2N(0.866) = -1.732N
The above indicates that there is no resultant force in the x-axis, since it is equal to zero (
= 0).
The total force is seen to act only in the y-axis, since it only has a y-component equivalent to 1.732 times the force due to each of the Q particles on q.
<em>The total force on the particle with charge q is therefore perpendicular to the bottom of the triangle.</em>