Answer:
a= 4.4×10 m/s^2
Explanation:
pressure P = E/c
Where, E = 100 W/m^2 intensity of light
c= speed of light = 3×10^8 m/s
P = 1000/ 3×10^8
P = 3.33×10^(-6) Pa
Force F = P×A
- P is the pressure and c= speed of light
F = 3.33×10^{-6}×6.65×10(-29)
= 2.22×10^{-6}
acceleration a = F/m = 2.22×10^{-6}/ 5.10×10^{-27}
a= 4.4×10 m/s^2
Answer: The temperature of the water falls by 3.3°C
Explanation:
The heat change is related to the change in temperature by the equation
dH = m Cp dT
In this example, -2665 J = 193 g x 4.184 J/g°C x dT
so dT = -3.3 °C
The gravitational force between the two balls is 
Explanation:
The magnitude of the gravitational force between two objects is given by:
where
:
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
For the balls in this problem, we have


r = 0.74 m
Substituting into the equation, we find the gravitational force between the two balls:
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
E_Phase = 560V
Explanation:
The computation of the voltage i.e. dropped across each phase is shown below:
Given that
The delta connection line voltage is
E_line = 560 V
And, in the case of delta connection, the line voltage would be equivalent to the phase voltage
That means
E_Phase = E_Line
= 560 V
Hence, the voltage i.e. dropped across each phase is
E_Phase = 560V