Given :
Initial speed of car A is 15 m/s and initial speed of car B is zero.
Final speed of car A is zero and final speed of car B is 10 m/s.
To Find :
What fraction of the initial kinetic energy is lost in the collision.
Solution :
Initial kinetic energy is :

Final kinetic energy is :

Now, fraction of initial kinetic energy loss is :

Therefore, fraction of initial kinetic energy loss in the collision is 1.25 .
Answer:
2250N
Explanation:
W= mg,
where W= weight
m= mass
g= acceleration due to gravity
Given that the body is 90kg, m= 90kg.
Acceleration due to gravity of planet
= 2.5(10)
= 25 m/s²
Weight of body on planet
= 90(25)
= 2250N
*Mass is the amount of matter an object has and is constant (same on earth and the planet).
Explanation:
As the given data is as follows.
ohm
,
ohm,
= 1200
(as 1 k ohm = 1000 m)
(a) We will calculate the maximum resistance by combining the given resistances as follows.
Max. Resistance = 
=
ohm
= 2600 ohm
or, = 2.6
ohm
Therefore, the maximum resistance you can obtain by combining these is 2.6
ohm.
(b) Now, the minimum resistance is calculated as follows.
Min. Resistance = 
= 
=
ohm
Hence, we can conclude that minimum resistance you can obtain by combining these is
ohm.
Answer:
Explanation:
Given
mass of box 
speed of box 
distance moved by the box 
coefficient of kinetic friction 
Friction force 


Kinetic Energy of box will be utilize to overcome friction and rest is stored in spring in the form of elastic potential energy



