The total kinetic energy of the system after collision is 223.5J
In elastic collision kinetic energy and momentum are conserved.
According to the question
mass of object a = 25kg
mass of object b = 25 kg
initial velocity of a u1 = 5.98 m/s
initial velocity of b u2 = 0
so from momentum conservation-
mau1 + mbu2 = (m1+m2)v
25kg × 5.98m/s + 25×0 = (25+25)v
v = 2.99 m/s
Now the total kinetic energy after the collision will be:
final kinetic energy = 1/2 (m1+m2) v²
= 1/2 (25+25)× (2.99)²
= 223.5 J
Thus, total kinetic energy of the system after collision is 223.5J
Learn more about elastic collision here:
brainly.com/question/1808045
#SPJ4
<h2>
Answer: size</h2>
Gel electrophoresis is called to the technique used by scientists for analytical purposes, in life sciences laboratories to separate macromolecules (DNA, RNA, and proteins from various sources).
The process consists of separating the molecules according to their <u>size</u> and <u>electric charge</u>. This is done with a gel (a gelatinous substance extracted from seaweed, called <em>agarose</em>) of controllable porosity placed in an ionic buffer environment. This is how the gel acts as a molecular sieve that separates larger molecules from the smaller ones, because each molecule has different size and charge and will move through the gel at different speeds.
That is, the smaller molecules move more quickly through the gel while the larger ones are left behind.
Use SUVAT where:
S = distance
U = initial velocity = 30m/s
V = end velocity = 0 m/s
A = acceleration = ?
T = time = 5 secs
then pick out the equation v = u + at
so:
0 = 30 + 5a
-30 / 5 = a
a = -6 m/s^2