Answer:
Nuclear Fusion
Explanation:
The process releases energy because the total mass of the resulting single nucleus is less than the mass of the two original nuclei. The leftover mass becomes energy.
To minimize neutron leakage from a reactor, the ratio of the surface area to the volume should be a minimum. For a given volume V the ratio of the sphere will be
.
We know that the surface area and volume of the sphere is given by:

Therefore, the ratio between the surface area and the volume for the sphere will be:

Equating the volume to the constant c, we will find the value of
.

Substituting the value of r in the ration between surface area and volume, we get:

Calculating the constants, we get:

Hence, the ration between surface area and volume is 
To learn more about surface area and volume of sphere, refer to:
brainly.com/question/4387241
#SPJ4
Answer:
1.67 A
Explanation:
Given that,
→ Power (P) = 400 W
→ Potential difference (V) = 240 V
→ Current (I) = ?
The amount of current drawn will be,
→ P = V × I
→ I = P/V
→ I = 400/240
→ I = 1.66666666667
→ [ I = 1.67 A ]
Hence, the current drawn 1.67 A.
Answer:
9 cm
-36 cm
Explanation:
u = Object distance
v = Image distance
f = Focal length = 12
m = Magnification = 4

Lens equation

Object distance is 9 cm

Image distance is -36 cm (other side of object)
<span>If the temperature increases in a sample of gas at constant volume, then its pressure increases. The increase in temperature makes the molecule hit the walls of the container faster. The correct option among all the options that are given in the question is the third option or option "c". I hope the answer helps you.</span>