You need to use Pythagoras’ Theorem.
A² + B² = c² and c is the hypotenuse of the right angled triangle.
The height of the tower (5 feet) is A and the distance from the end of the cable and the base of the tower (12 feet) is B. The length of ONE cable is c. So:
A² + B² = c²
5² + 12² = c²
25 + 144 = c²
169 = c²
13 = c. This is the length of one cable.
3 x 13 = 39 therefore the total length of the cables is 39 feet.
25
It`s either 100,000 because there is only four 0`s making it 70,000 or it`s 700,000 and you made a mistake of not typing that last zero in which case the question would be pointless to ask because the answer is in the question.
i just took the quiz and its 32 :)
Answer:
From the analysis W1=W2.
they are directly related
Step-by-step explanation:
the work-done in stretching a spring can be expressed as

where k= spring constant
x= change on length of spring
Hence for W1
Given data
x= 34-24= 10 cm
solving in terms of k we have

Hence for W2
Given data
x= 44-34= 10 cm
solving in terms of k we have

Answer:
Let's define the variables:
A = price of one adult ticket.
S = price of one student ticket.
We know that:
"On the first day of ticket sales the school sold 1 adult ticket and 6 student tickets for a total of $69."
1*A + 6*S = $69
"The school took in $150 on the second day by selling 7 adult tickets and student tickets"
7*A + 7*S = $150
Then we have a system of equations:
A + 6*S = $69
7*A + 7*S = $150.
To solve this, we should start by isolating one variable in one of the equations, let's isolate A in the first equation:
A = $69 - 6*S
Now let's replace this in the other equation:
7*($69 - 6*S) + 7*S = $150
Now we can solve this for S.
$483 - 42*S + 7*S = $150
$483 - 35*S = $150
$483 - $150 = 35*S
$333 = 35*S
$333/35 = S
$9.51 = S
That we could round to $9.50
That is the price of one student ticket.