When ice melts, its temperature doesn't change ... ice at 32 degrees becomes water at 32 degrees.
When water boils, its temperature doesn't change ... water at 212 degrees becomes steam at 212 degrees.
The row that says both of these is row-D .
The mass of a substance is given in atomic mass units and is calculated by adding the average atomic masses of all the atoms in the substance's chemical formula.
<h3>What empirical formula represents the total average atomic mass of every atom?</h3>
The Method The average atomic masses of all the atoms included in a formula's representation are added to get the mass of any molecule, formula unit, or ion. It has no bearing on the number of significant figures because the number of atoms is an exact quantity. One H2O molecule weighs 18.02 amu on average.
<h3>What connection exists between the empirical formula and the molecular formula?</h3>
You can determine the number of atoms of each element in a molecule using its molecular formula. These empirical formulations provide the most basic or reduced elemental ratio of a compound. The empirical formula and the molecular formula of a substance are same if the molecular formula can no longer be decreased.
To know more about atomic mass visit:-
brainly.com/question/17067547
#SPJ4
Answer:
black pot
Explanation:
option a is correct
Cold water will warm to room temperature faster in a Black pot as we know that Black surfaces and good absorbers of heat in comparison to other surfaces. Moreover, Silver a good reflector of heat. It reflects most of heat incident on it, the cold water will take longer time to come the room temperature in Silver pot.
(a) 24.6 Nm
The torque produced by the net thrust about the center of the circle is given by:

where
F is the magnitude of the thrust
r is the radius of the wire
Here we have
F = 0.795 N
r = 30.9 m
Therefore, the torque produced is

(b) 
The equivalent of Newton's second law for a rotational motion is

where
is the torque
I is the moment of inertia
is the angular acceleration
If we consider the airplane as a point mass with mass m = 0.741 kg, then its moment of inertia is

And so we can solve the previous equation to find the angular acceleration:

(c) 
The linear acceleration (tangential acceleration) in a rotational motion is given by

where in this problem we have
is the angular acceleration
r = 30.9 m is the radius
Substituting the values, we find
