1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
abruzzese [7]
3 years ago
5

Exercise 1 Electric Fields In this exercise, you will use a digital multimeter to collect voltage data to graph electric fields.

Procedure Place the sheet of graph paper on a table and center the clear tray over the grid. Attach the end of each jumper cable to a metal nut by clamping the free alligator clip onto it as shown in Figure 4. The figure is a photo of an alligator clip attached to a metal nut. It is attached so that one jaw of the clip is inside the nut, against the threads, and the other jaw is on the outside. Figure 4. Attaching the alligator clip to the metal nut. Place the two metal nut conductors in opposite ends of the clear tray. They should be approximately centered and about 2.5 cm away from the ends of the tray. Position the battery holder with a 1.5V battery outside of and slightly away from the tray so it cannot get wet. Attach the jumper cables from the two conductors to the battery holder, one to the positive terminal and the other to the negative terminal. Fill the tray with sufficient water to just barely cover the conductors. Set your DMM to measure voltage by moving the dial to DCV, and its range to a voltage equal to or higher than that of the 1.5V battery. Attach the negative black lead from the DMM to the negative terminal of the battery holder. Attach a jumper cable to the positive red lead that comes from the DMM. To the other end of the jumper cable attach the washer. See Figure 5. The figure is a photo of the experiment setup. The two nuts are positioned in the clear tray, each connected to opposite terminals of the battery holder. One lead from the digital multimeter is connected to the metal washer, and the other lead is connected to the negative terminal of the battery holder. Figure 5. Experimental setup. With the DMM's positive red lead, touch each of the conductors in the tray and record your findings. Touching the negative conductor in the tray should result in a zero volt reading, Touching the positive conductor should result in a reading that is the same as the battery output, and Touching a distance halfway between the conductors should record a voltage equal to approximately one-half the voltage of the battery. If it does not, stir a few grains of salt into the water in the tray. Using the second sheet of graph paper, draw the conductors' locations and label them with the voltage readings of your voltmeter. Place the positive red lead of the DMM in the water again and note the voltage reading. Move the lead around in such a way that the voltage reading is kept at the same value. How far does this path go? Sketch this pattern on your graph paper and label the line with the voltage you chose. Move the positive lead along additional voltage value paths and similarly sketch their patterns on the graph paper until you have well mapped out the area between and around the conductors. With a color pen or pencil draw a point any place on your map to represent a moveable positive charge. Predict the path it would take by drawing a line with your colored pen or pencil. See Figure 6. The figure is a sample graph of experimental results. It shows a 4.5 V trace encircling the +5V electrode. The 4.0 V, 3.5 V, and 3.0 V traces form arcs which curve around the +5V electrode. The 2.5 V, 2.0 V, and 1.5 V traces form arcs which curve around the 0V electrode. The 1.0 V trace encircles the 0V electrode. Figure 6. Sample graph of experimental results. Note: Your results will look different from the sample since you will use a rectangular dish, place your conductors in different positions, and use a 1.5V battery, but it still illustrates the concept of electric field mapping. Take a photo of the graph. Upload the image into Graph 1. Optional: If time permits, repeat this experiment with differently shaped conductors and compare their electric field maps.
1. What generalizations can you make from this exploration?

2. Where would a positive test charge have the least potential energy?

3. How much energy must you add to the system to move one electron 1 m in a direction along one of the equal potential lines?

4. If lightning strikes a tree 20 m away, would it be better to stand facing the tree, your back to the tree, or your side to the tree? Assume your feet are a comfortable shoulder width apart. Explain your answer.
Physics
1 answer:
Lyrx [107]3 years ago
4 0

Answer:

The answers are in the explanation section below

Explanation:

1) The generalization that can be made from the exploration is that as we move away from the positive electrode, the potential energy gets lower. If we move away from the negative electrode, then the potential energy becomes higher.

2) The positive test charge will have the least potential energy when it gets to the negative electrode point.

3) To move one electron 1m in a direction along one of the equal potential lines, there is no energy needed. Zero work will be required for a charge to move on the equipotential line.

4) If lightning strikes a tree 20m away, it would be better to face the tree or have our back facing the tree. This is because the equipotential line will be present at the point where our body stands, this will protect from electric shock.

The pattern to be sketched is attached.

Download pdf
You might be interested in
What type of waves are sound waves, and how do they<br> transfer energy?
klemol [59]

Answer:

Sound wave types - longitudinal waves

Longitudinal waves - Vibrating string the creates sound in the way it moves.

Explanation:

Longitudinal waves have particles of the medium that are displaced in a parallel direction to energy transport.

7 0
3 years ago
Principal of simple machine?​
sergij07 [2.7K]

Answer:

if there is no friction in a simple machine, work output and work input are found equal in that machine

Explanation:

3 0
3 years ago
A thin spherical glass shell in air is filled with an unknown liquid. A horizontal parallel light beam is incident on the shell
sammy [17]
I have the exact same question, any chance you figured it out since you posted this?
8 0
3 years ago
a boy is standing 4 meter from a plane mirror how far and in what distance must te move so that he will be 4 meter from his imag
Alona [7]

Answer:

2 meters towards the mirror.

Explanation:

In a plane mirror the image distance is equal to the object distance. Therefore, by moving 2 meters towards the mirror, the boy reduces the distance between him and the mirror to two meters which is the object distance. The image distance is also 2 meters. add the two distances you will get four meters.

6 0
3 years ago
The earth's radius is about 4000 miles. kampala, the capital of uganda, and singapore are both nearly on the equator. the distan
Y_Kistochka [10]
<span>The solution is: Earth circumference is 2*pi*r=25,130 miles 25,130 miles corresponds to 360Âş, so 5,000 miles corresponds to 360*5000/25130 = 71,6Âş 71,6Âş is equivalent to 71,6*2pi/360=1,25 radians Angular velocity is 1,25/9=0,139 rad/h</span>
4 0
3 years ago
Other questions:
  • Spot welding is used to fuse two sheets of metal together at one small spot. Two copper electrodes pinch the sheets together at
    9·1 answer
  • A loud sound is produced in the downtown section of a city. Which of the following is least likely to occur with the sound wave
    7·1 answer
  • A point charge is placed at each corner of square with side leanth a. The charges all have same magnitude q. My question, What i
    13·1 answer
  • Acid rain is the direct result of acid released by burning fossil fuels. T/F
    13·2 answers
  • an object with a mass of 6 kilograms accelerates 4.0 MS to the second when an unknown force is applied to it what is the amount
    10·1 answer
  • The Pangaea theory supports the theory of plate tectonics because _____.
    12·2 answers
  • Explain why solar and lunar eclipses happen.
    12·1 answer
  • An apple contains 165 Calories. How many actual calories does it contain? How many joules does it contain
    6·1 answer
  • A ball is thrown downward at 4.5 m/s and accelerates at 9.8 m/s^2. What is its instantaneous velocity 2.4 s later?​
    10·1 answer
  • Ejbsjca bdsj dbcsc j ecsabkfskbj jcbaskjbb
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!