1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
abruzzese [7]
3 years ago
5

Exercise 1 Electric Fields In this exercise, you will use a digital multimeter to collect voltage data to graph electric fields.

Procedure Place the sheet of graph paper on a table and center the clear tray over the grid. Attach the end of each jumper cable to a metal nut by clamping the free alligator clip onto it as shown in Figure 4. The figure is a photo of an alligator clip attached to a metal nut. It is attached so that one jaw of the clip is inside the nut, against the threads, and the other jaw is on the outside. Figure 4. Attaching the alligator clip to the metal nut. Place the two metal nut conductors in opposite ends of the clear tray. They should be approximately centered and about 2.5 cm away from the ends of the tray. Position the battery holder with a 1.5V battery outside of and slightly away from the tray so it cannot get wet. Attach the jumper cables from the two conductors to the battery holder, one to the positive terminal and the other to the negative terminal. Fill the tray with sufficient water to just barely cover the conductors. Set your DMM to measure voltage by moving the dial to DCV, and its range to a voltage equal to or higher than that of the 1.5V battery. Attach the negative black lead from the DMM to the negative terminal of the battery holder. Attach a jumper cable to the positive red lead that comes from the DMM. To the other end of the jumper cable attach the washer. See Figure 5. The figure is a photo of the experiment setup. The two nuts are positioned in the clear tray, each connected to opposite terminals of the battery holder. One lead from the digital multimeter is connected to the metal washer, and the other lead is connected to the negative terminal of the battery holder. Figure 5. Experimental setup. With the DMM's positive red lead, touch each of the conductors in the tray and record your findings. Touching the negative conductor in the tray should result in a zero volt reading, Touching the positive conductor should result in a reading that is the same as the battery output, and Touching a distance halfway between the conductors should record a voltage equal to approximately one-half the voltage of the battery. If it does not, stir a few grains of salt into the water in the tray. Using the second sheet of graph paper, draw the conductors' locations and label them with the voltage readings of your voltmeter. Place the positive red lead of the DMM in the water again and note the voltage reading. Move the lead around in such a way that the voltage reading is kept at the same value. How far does this path go? Sketch this pattern on your graph paper and label the line with the voltage you chose. Move the positive lead along additional voltage value paths and similarly sketch their patterns on the graph paper until you have well mapped out the area between and around the conductors. With a color pen or pencil draw a point any place on your map to represent a moveable positive charge. Predict the path it would take by drawing a line with your colored pen or pencil. See Figure 6. The figure is a sample graph of experimental results. It shows a 4.5 V trace encircling the +5V electrode. The 4.0 V, 3.5 V, and 3.0 V traces form arcs which curve around the +5V electrode. The 2.5 V, 2.0 V, and 1.5 V traces form arcs which curve around the 0V electrode. The 1.0 V trace encircles the 0V electrode. Figure 6. Sample graph of experimental results. Note: Your results will look different from the sample since you will use a rectangular dish, place your conductors in different positions, and use a 1.5V battery, but it still illustrates the concept of electric field mapping. Take a photo of the graph. Upload the image into Graph 1. Optional: If time permits, repeat this experiment with differently shaped conductors and compare their electric field maps.
1. What generalizations can you make from this exploration?

2. Where would a positive test charge have the least potential energy?

3. How much energy must you add to the system to move one electron 1 m in a direction along one of the equal potential lines?

4. If lightning strikes a tree 20 m away, would it be better to stand facing the tree, your back to the tree, or your side to the tree? Assume your feet are a comfortable shoulder width apart. Explain your answer.
Physics
1 answer:
Lyrx [107]3 years ago
4 0

Answer:

The answers are in the explanation section below

Explanation:

1) The generalization that can be made from the exploration is that as we move away from the positive electrode, the potential energy gets lower. If we move away from the negative electrode, then the potential energy becomes higher.

2) The positive test charge will have the least potential energy when it gets to the negative electrode point.

3) To move one electron 1m in a direction along one of the equal potential lines, there is no energy needed. Zero work will be required for a charge to move on the equipotential line.

4) If lightning strikes a tree 20m away, it would be better to face the tree or have our back facing the tree. This is because the equipotential line will be present at the point where our body stands, this will protect from electric shock.

The pattern to be sketched is attached.

Download pdf
You might be interested in
Mendel made conclusions about inheritance without ever seeing chromosomes or knowing about DNA. Which technology has enabled the
kupik [55]
It would most likely be the microscope.
7 0
3 years ago
Read 2 more answers
What is the radius of the 5th orbital in hydrogen?
iren2701 [21]

Answer:

So, the radius of fifth Bohr orbital of hydrogen is 1. 3225 nm.

Explanation:

pls mark me brainless hope this helps loves x!

6 0
2 years ago
Read 2 more answers
The state of matter that has particles that slide by one another
Dvinal [7]
The state of matter that has particles that slide by one another is liquid because liquid is very slippery.
7 0
2 years ago
⚠HI YOU GUYS HELLLP BRAINLIEST AND 100 PIONTS⚠ Use THE MAP
Setler [38]

Answer:

5.A mid-ocean ridge or mid-oceanic ridge is an underwater mountain range, formed by plate tectonics. This uplifting of the ocean floor occurs when convection currents rise in the mantle beneath the oceanic crust and create magma where two tectonic plates meet at a divergent boundary.

6.The Nazca plate is an oceanic plate, while the South American plate is continental. The fast moving Nazca plate is moving east towards the South American plate at a downward angle and converging. This process is called subduction, resulting in frequent earthquakes & production of the Andes Mountains.

7.The Nazca plate forms the southeastern part of the Pacific plate. The Nazca and the Pacific plate share both divergent and transform type of plate boundary. The Pacific and the Nazca plate are separating at an increasing rate of about 122-142mm/year.

8.Convection currents in the mantle and in the ocean are similar because they both are responsible for the shaping the Earth's surface. Two forces are behind the movement of Earth's huge land masses. Due to combined action of convection currents and gravity, Earth's plates are in constant motion.

Explanation:

8 0
3 years ago
When magma cools quickly, what kind of texture or
Ksivusya [100]

Answer:

a

Explanation:

when magma cools Crystal's form because the solution is super saturated with respect to some minerals if the magma cools quickly the crystals do not have much time to form hence they are small and also the resulting rock is fine grained

6 0
3 years ago
Other questions:
  • A strip of copper metal is riveted to a strip of aluminum. the two metals are then heated. the coefficient of linear expansion o
    12·1 answer
  • A certain car can accelerate from rest to 70km/h in 7 seconds.Find the cars average acceleration
    8·2 answers
  • Renewable resources can be
    14·1 answer
  • A gnat takes off from one end of a pencil and flies around erratically for 41.641.6 s before landing on the other end of the sam
    12·1 answer
  • A person throws a stone from the corner edge of a building. The stone's initial velocity is 28.0 m/s directed at 43.0° above the
    13·1 answer
  • A proton travels with a speed of 4.2×106 m/s at an angle of 30◦ west of north. A magnetic field of 2.5 T points to the north. Fi
    14·1 answer
  • How to calculate motion​
    8·2 answers
  • 29. Jorge is conducting an investigation into perfectly inelastic collisions using equipment where two carts collide with
    11·1 answer
  • A cow standing atop a building in Times Square recalled a funny joke and began to laugh. The uncontrollable laughter caused the
    12·1 answer
  • Problem (2): Two point charged particles are 4.41cm apart. They are moved and placed in a new position. The force between them i
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!