1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
abruzzese [7]
3 years ago
5

Exercise 1 Electric Fields In this exercise, you will use a digital multimeter to collect voltage data to graph electric fields.

Procedure Place the sheet of graph paper on a table and center the clear tray over the grid. Attach the end of each jumper cable to a metal nut by clamping the free alligator clip onto it as shown in Figure 4. The figure is a photo of an alligator clip attached to a metal nut. It is attached so that one jaw of the clip is inside the nut, against the threads, and the other jaw is on the outside. Figure 4. Attaching the alligator clip to the metal nut. Place the two metal nut conductors in opposite ends of the clear tray. They should be approximately centered and about 2.5 cm away from the ends of the tray. Position the battery holder with a 1.5V battery outside of and slightly away from the tray so it cannot get wet. Attach the jumper cables from the two conductors to the battery holder, one to the positive terminal and the other to the negative terminal. Fill the tray with sufficient water to just barely cover the conductors. Set your DMM to measure voltage by moving the dial to DCV, and its range to a voltage equal to or higher than that of the 1.5V battery. Attach the negative black lead from the DMM to the negative terminal of the battery holder. Attach a jumper cable to the positive red lead that comes from the DMM. To the other end of the jumper cable attach the washer. See Figure 5. The figure is a photo of the experiment setup. The two nuts are positioned in the clear tray, each connected to opposite terminals of the battery holder. One lead from the digital multimeter is connected to the metal washer, and the other lead is connected to the negative terminal of the battery holder. Figure 5. Experimental setup. With the DMM's positive red lead, touch each of the conductors in the tray and record your findings. Touching the negative conductor in the tray should result in a zero volt reading, Touching the positive conductor should result in a reading that is the same as the battery output, and Touching a distance halfway between the conductors should record a voltage equal to approximately one-half the voltage of the battery. If it does not, stir a few grains of salt into the water in the tray. Using the second sheet of graph paper, draw the conductors' locations and label them with the voltage readings of your voltmeter. Place the positive red lead of the DMM in the water again and note the voltage reading. Move the lead around in such a way that the voltage reading is kept at the same value. How far does this path go? Sketch this pattern on your graph paper and label the line with the voltage you chose. Move the positive lead along additional voltage value paths and similarly sketch their patterns on the graph paper until you have well mapped out the area between and around the conductors. With a color pen or pencil draw a point any place on your map to represent a moveable positive charge. Predict the path it would take by drawing a line with your colored pen or pencil. See Figure 6. The figure is a sample graph of experimental results. It shows a 4.5 V trace encircling the +5V electrode. The 4.0 V, 3.5 V, and 3.0 V traces form arcs which curve around the +5V electrode. The 2.5 V, 2.0 V, and 1.5 V traces form arcs which curve around the 0V electrode. The 1.0 V trace encircles the 0V electrode. Figure 6. Sample graph of experimental results. Note: Your results will look different from the sample since you will use a rectangular dish, place your conductors in different positions, and use a 1.5V battery, but it still illustrates the concept of electric field mapping. Take a photo of the graph. Upload the image into Graph 1. Optional: If time permits, repeat this experiment with differently shaped conductors and compare their electric field maps.
1. What generalizations can you make from this exploration?

2. Where would a positive test charge have the least potential energy?

3. How much energy must you add to the system to move one electron 1 m in a direction along one of the equal potential lines?

4. If lightning strikes a tree 20 m away, would it be better to stand facing the tree, your back to the tree, or your side to the tree? Assume your feet are a comfortable shoulder width apart. Explain your answer.
Physics
1 answer:
Lyrx [107]3 years ago
4 0

Answer:

The answers are in the explanation section below

Explanation:

1) The generalization that can be made from the exploration is that as we move away from the positive electrode, the potential energy gets lower. If we move away from the negative electrode, then the potential energy becomes higher.

2) The positive test charge will have the least potential energy when it gets to the negative electrode point.

3) To move one electron 1m in a direction along one of the equal potential lines, there is no energy needed. Zero work will be required for a charge to move on the equipotential line.

4) If lightning strikes a tree 20m away, it would be better to face the tree or have our back facing the tree. This is because the equipotential line will be present at the point where our body stands, this will protect from electric shock.

The pattern to be sketched is attached.

Download pdf
You might be interested in
The type of bond formed by shared electrons is covalent, ionic, or metallic
loris [4]
I believe the answer in Covalent Bond.
7 0
3 years ago
Read 2 more answers
Which terrestrial ecosystem or life zone produces the highest net primary productivity per year? a. temperate forest b. Savanna
horsena [70]

a. hope this helps...

8 0
3 years ago
The focal length of the lens of a simple digital camera is 40 mm, and it is originally focused on a person 25 m away. In what di
ss7ja [257]

Answer:

Explanation:

Here image distance is fixed .

In the first case if v be image distance

1 / v - 1 / -25 = 1 / .05

1 / v = 1 / .05 - 1 / 25

= 20 - .04 = 19.96

v = .0501 m = 5.01 cm

In the second case

u = 4 ,

1 / v - 1 / - 4 = 1 / .05

1 / v = 20 - 1 / 4 = 19.75

v = .0506 = 5.06 cm

So lens must be moved forward by 5.06 - 5.01 =  .05 cm ( away from film )

3 0
3 years ago
A wave can be best defined as <br><br> P.S pls help
Sidana [21]

Answer:

It should be A. Disturbance that travels through a medium or space, transmitting energy from one point to another.

I hope this helped you :)

4 0
3 years ago
If the distance to a point source of sound is doubled, by what multiplicative factor does the intensity change?
alina1380 [7]

If the distance to a point source of sound is doubled, by a multiplicative factor of 4, the intensity changes.

Intensity of sound is the sound which is perpendicular to sound wave propogation per unit area. It is dependent on the Surface of source sound.

Intensity is the Power per unit area. Its SI unit is Watt/m².

As we move away from a source of sound, the sound starts to diminish. This is due to the decreasing sound intensity with distance.

It can also be understood by the fact that on increasing distance, the Power radiated by the source spreads over a larger area. Hence, the Intensity decreases gradually.

Since, Intensity is proportional to the square of the distance.

Hence, on doubling the distance, Intensity reduces to one fourth of the initial intensity or reduces by a multiplicative factor of 4.

Learn more about Intensity here, brainly.com/question/17583145

#SPJ4

8 0
2 years ago
Other questions:
  • An airplane is initially flying horizontally (not gaining or losing altitude), and heading exactly North. Suppose that the earth
    5·1 answer
  • Define scalar and vector
    14·1 answer
  • The spreading of waves behind an aperture ismore for long wavelengths and less for short wavelengths.less for long wavelengths a
    14·1 answer
  • HURRY!!
    6·2 answers
  • The escape velocity on earth is 11.2 km/s. What fraction of the escape velocity is the rms speed of H2 at a temperature of 31.0
    10·1 answer
  • Is inertia a force (will give brainleist for first answer)
    12·2 answers
  • How will this substance ease the pain?​
    12·1 answer
  • Two small plastics balls are hanging on silk threads, 50 mm from each other. The charges on the balls are indicated 1.3.1 Calcul
    5·1 answer
  • What type of material is thought to explain the larger size of the outer planets relative to the inner planets
    6·1 answer
  • The stool is 120 cm tall. How tall is it in inches? Note: there are 2.54 cm in 1 inch
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!