Answer:
<em>The end of the ramp is 38.416 m high</em>
Explanation:
<u>Horizontal Motion
</u>
When an object is thrown horizontally with an initial speed v and from a height h, it follows a curved path ruled by gravity.
The maximum horizontal distance traveled by the object can be calculated as follows:

If the maximum horizontal distance is known, we can solve the above equation for h:

The skier initiates the horizontal motion at v=25 m/s and lands at a distance d=70 m from the base of the ramp. The height is now calculated:


h= 38.416 m
The end of the ramp is 38.416 m high
Answer:
The explorer should travel to reach base camp to 5.02 Km at 4.28° south of due west.
Explanation:
Using trigonometric function like Sen(Ф), Cos(Ф) and Tan(Ф) we can get distance and direction that the explorer should travel to reach base camp. When we discompound the vector
y
so that
;
to get how far we use Pythagorean theorem so
so that 
1. Air pollution is a problem<span> because it can cause damage to animals, trees, plants, crops and water sources in the environment. </span>Pollution<span> in the </span>air<span> causes </span>problems<span> for aviation because it reduces visibility, while also being responsible for damaging buildings and other structures.
2. </span><span>The air we breathe has a very exact chemical composition; 99 percent of it is made up of nitrogen, oxygen, water vapor and inert gases. Air </span>pollution occurs<span> when things that aren't normally there are added to the air. A common type of air </span>pollution<span>happens when people release particles into the air from burning fuels.
3. </span>Pollution prevention (P2) is any practice that reduces, eliminates, or prevents pollution at its source. ... Reducing the amount of pollution produced means less waste to control, treat, or dispose of. Less pollution means less hazards posed to public health and the environment.
4. Why is it so important to have clean air?
Answer:

Explanation:
Regardless of the initial velocity of the pebble, the acceleration of the pebble is equal to the gravitational acceleration which is equal to 9.8 m/s2 towards downwards direction.
This can be shown by Newton's Second Law. According to the law, the net force applied on an object is equal to mass times acceleration of that object.
During the downward motion, the only force acting on the pebble is the gravitational force, hence its acceleration is equal to gravitational acceleration.
To solve this problem we will apply the concepts related to the potential, defined from the Coulomb laws for which it is defined as the product between the Coulomb constant and the load, over the distance that separates the two objects. Mathematically this is

k = Coulomb's constant
q = Charge
r = Distance between them


Replacing,



Therefore the potential at the surface of the raindrop is 135 V