Answer: If both gases undergo the same entropy then more heat is added to gas a because the entropy of the gas a is less than the entropy of the gas b.
Explanation:
Entropy is defined as the degree of randomness. When the temperature of the gas increases then the entropy of gas also increases.
In the given problem, Quantity a of an ideal gas is at absolute temperature t, and a second quantity b of the same gas is at absolute temperature 2t.
Heat is added to each gas, and both gases are allowed to expand isothermally. It means that the volume is constant during this process.
If both gases undergo the same entropy then more heat is added to gas a because the entropy of the gas a is less than the entropy of the gas b. If the heat is added then there will be more entropy.
Answer:
The acceleration of a car would be:
m/s²
Explanation:
Given
Initial velocity =
m/s
Final velocity =
m/s
Time elapsed =
s
To determine
We need to determine the acceleration of a car.
We know that acceleration is basically the rate of change in velocity over time.
Thus,
We can determine the acceleration using the formula

where
is the acceleration
is the initial velocity
is the final velocity
is time elapsed
now substituting the values
,
, and
in the formula



m/s²
Therefore, the acceleration of a car would be:
m/s²
Answer:
2.9 N
Explanation:
When the separation distance, r, is 0.5 m, the electrostatic force is 0.32 N. Electrostatic force is given as:
F = (k * q1 * q2) / r²
Where F = force acting on the balloons
k = Coulombs constant
Therefore:
0.32 = (k * q1 * q2) / 0.5²
=> k * q1 * q2 = 0.32 * 0.5² ------------(1)
When the distance is decreased by 3, that is r = r/3 = 0.5/3
F = (k * q1 * q2) / (0.5/3)² ------------(2)
Putting (1) into (2):
=> F = (0.32 * 0.5²) / (0.5/3)²
F = (0.32 * 0.5² * 3²) / 0.5²
F = 2.9 N
Therefore, the force would be 2.9 N