There is synthesis
decomposition
double displacement
single displacement
combustion
metathesis
so i guess you could say 6
No two electrons in an atom or molecule may have the same four electronic quantum numbers, according to the Pauli Exclusion Principle. Only two electrons can fit into an orbital at a time, hence they must have opposing spins.
<h3>What is Pauli's exclusion principle ?</h3>
According to Pauli's Exclusion Principle, no two electrons in the same atom can have values for all four of their quantum numbers that are exactly the same. In other words, two electrons in the same orbital must have opposing spins and no more than two electrons can occupy the same orbital.
- The reason it is known as the exclusion principle is because it states that all other electrons in an atom are excluded if one electron in the atom has the same specific values for all four quantum numbers.
Learn more about Pauli's exclusion principle here:
brainly.com/question/2623936
#SPJ4
I think is A or B it depends on like what the trying to answer
Answer: 363 Ω.
Explanation:
In a series AC circuit excited by a sinusoidal voltage source, the magnitude of the impedance is found to be as follows:
Z = √((R^2 )+〖(XL-XC)〗^2) (1)
In order to find the values for the inductive and capacitive reactances, as they depend on the frequency, we need first to find the voltage source frequency.
We are told that it has been set to 5.6 times the resonance frequency.
At resonance, the inductive and capacitive reactances are equal each other in magnitude, so from this relationship, we can find out the resonance frequency fo as follows:
fo = 1/2π√LC = 286 Hz
So, we find f to be as follows:
f = 1,600 Hz
Replacing in the value of XL and Xc in (1), we can find the magnitude of the impedance Z at this frequency, as follows:
Z = 363 Ω
Answer:
(d) a net external force must be acting on the system
Explanation:
Momentum is given as the product of mass and velocity.
P = MV
According to Newton's second law of motion, " Force applied to a body (system) is directly proportional to the rate of change of momentum of the body (system) which takes place in the direction of the applied force (external force).
F ∝ΔMV
Therefore, If the total momentum of a system is changing, a net external force must be acting on the system.
(d) a net external force must be acting on the system