To solve this problem we will apply the principles of conservation of energy, for which we have to preserve the initial kinetic energy as elastic potential energy at the end of the movement. If said equality is maintained then we can affirm that,


Here,
m = mass
k = Spring constant
x = Displacement
v = Velocity
Rearranging to find the velocity,



Our values are,



Replacing our values we have,


Therefore the velocity is 
Answer:
charges of the beads is 1.173 ×
C
Explanation:
given data
mass = 3.8589 g = 0.003859 kg
spring length = 5 cm = 0.05 m
extend spring x = 1.5747 cm = 0.15747 m
spring's extension = 0.0116 m
to find out
charges of the beads
solution
we know that force is
force = mass × g
force = 0.003859 × 9.8
force = 0.03782 N
so we know force for mass
force = -kx
so k = force / x
put here force and x value
k = -0.03782 / 0.1575
k = -0.24 N/m
and
force for spring's extension
force = -kx
force = -0.24 ( 0.0116) = 0.002784 N
so here
total length L = 0.05 + 0.0116 = 0.0616
so charges of the beads = force × L² / ke
charges of the beads = 0.002784 × (0.0616)² / (9 ×
)
so charges of the beads = 1.173 ×
C
Answer:
Gravity provides a downward force, resulting in the diver going downward. They speed up like any falling object would, the pull of gravity is a dominant force. (There is a drag force – as a result of moving through the air.)
B strength training I think that’s the answer
The third law of thermodynamics,the principle of temperature.
This law states that the entropy at 0 is always equel to 0.
This means that it is impossible to cool down a perfect 0 or absolute 0(-273.15 C)