General internal energy expression:
Uf = (Ui-W) + Q
Where Uf = Final internal energy, Ui = Initial internal energy, W = Work done, Q = Heat added
But,
Uf -Ui = ΔU = 36 J, W = 17 J. Then,
ΔU = -W +Q => Q = ΔU+W = 36+17 = 53 J
Therefore, heat added to the system is 53 Joules
Answer:
Magnetic field at point having a distance of 2 cm from wire is 6.99 x 10⁻⁶ T
Explanation:
Magnetic field due to finite straight wire at a point perpendicular to the wire is given by the relation :
......(1)
Here I is current in the wire, L is the length of the wire, R is the distance of the point from the wire and μ₀ is vacuum permeability constant.
In this problem,
Current, I = 0.7 A
Length of wire, L = 0.62 m
Distance of point from wire, R = 2 cm = 2 x 10⁻² m = 0.02 m
Vacuum permeability, μ₀ = 4π x 10⁻⁷ H/m
Substitute these values in equation (1).

B = 6.99 x 10⁻⁶ T
The north and south poles of a magnetic field produced by an electromagnet will switch when the direction of the Current changes.
Answer:
v = 8.57 m/s
Explanation:
As we know that the wagon is pulled up by string system
So the net force on the wagon along the inclined is due to tension in the rope and component of weight along the inclined plane
So as per work energy theorem we know that
work done by tension force + work done by force of gravity = change in kinetic energy

so we have


m = 38.2 kg
d = 85.4 m
so now we have

