Answer:
0.41 moles.
Explanation:
Given that:
Mass of helium = 4.00 g
Initial Volume = 24.4 L
initial Temperature = 25.0 °C =( 25 + 273) = 298 K
initial Pressure = 1.00 atm
The volume was reduced to :
i.e
final volume of the helium - 10.4 L
Change in ΔV = 24.4 - 10.4 = 10.0 L
Temperature and pressure remains constant.
The new quantity of gas can be calculated by using the ideal gas equation.
PV = nRT
n = 
n = 
n = 0.4089 moles
n = 0.41 moles.
In order to deprotonate an acid, we must remove protons in order to achieve a more stable conjugate base. For this example, we can use the relationship between carboxylic acid and hydroxide.
Deprotonation is the removal of a proton from a specific type of acid in reaction to its coming into contact with a strong base. The compound formed from this reaction is known as the conjugate base of that acid. The opposite process is also possible and is when a proton is added to a special kind of base. This is a process referred to as protonation, which forms the conjugate acid of that base.
For the example we have chosen to give, the conjugate base is the carboxylate salt. This would be the compound formed by the deprotonated carboxylic acid. The base in question was strong enough to deprotonate the acid due to the greater stability offered as a conjugated base.
To learn more visit:
brainly.com/question/5613072?referrer=searchResults
Answer: Option (d) is the correct answer
Explanation:
The energy present within the bonds of the atoms of a compound or molecule is known as chemical energy.
As this energy is present at a position that is, within the bonds hence it is a potential energy. So, whenever there occurs a chemical reaction the stored chemical energy is released.
As potential energy is the energy possessed because of position of a substance. And, kinetic energy is the energy present due to the motion of an object.
Therefore, we can conclude that chemical energy is a form of potential energy.
I believe the answer is Viva