<span>PV / T = C</span>
As the pressure goes up, the temperature also goes up, and vice-versa.
<span>Also same as before, initial and final volumes and temperatures under constant pressure can be calculated.</span>
Answer: The theory might have become Obsolete or Superseded
Explanation:
A theory becomes obsolete or superseded if it becomes inadequate, false or incomplete in how its describes reality. It does not matter if it was once accepted. There are some theories such as Lysenkoism that are currently described as being obsolete because it does not conform to current reality. Another example of a theory that was superseded is the phlogiston theory. It was replaced a different theory of energy.
Answer:
electronic diode,
Explanation:
Non-ohmic conductors are materials that do not obey ohm's law and they are electronic diode, transistors, tungsten, thermistors and vacuum tube etc.
The question is incomplete, the complete question is;
The compound magnesium phosphate has the chemical formula Mg3(PO4)2. In this compound, phosphorus and oxygen act together as one charged particle, which is connected to magnesium, the other charged particle. What does the 2 mean in the formula 5Mg3(PO4)2? A. There are two elements in magnesium phosphate. B. There are two molecules of magnesium phosphate. C. There are two magnesium ions in a molecule of magnesium phosphate. D. There are two phosphate ions in a molecule of magnesium phosphate.
Answer:
There are two phosphate ions in a molecule of magnesium phosphate.
Explanation:
The compound magnesium phosphate is an ionic compound. Ionic compounds always consists of two ions, a positive ion and a negative ion.
In this case, the positive ion is Mg^2+ while the negative ion is PO4^3-.
The subscript, 2 after the formula of the phosphate ion means that there are two phosphate ions in each formula unit of magnesium phosphate.
Answer:
<em>His angular velocity will increase.</em>
Explanation:
According to the conservation of rotational momentum, the initial angular momentum of a system must be equal to the final angular momentum of the system.
The angular momentum of a system =
'ω'
where
' is the initial rotational inertia
ω' is the initial angular velocity
the rotational inertia = 
where m is the mass of the system
and r' is the initial radius of rotation
Note that the professor does not change his position about the axis of rotation, so we are working relative to the dumbbells.
we can see that with the mass of the dumbbells remaining constant, if we reduce the radius of rotation of the dumbbells to r, the rotational inertia will reduce to
.
From
'ω' =
ω
since
is now reduced, ω will be greater than ω'
therefore, the angular velocity increases.