Answer:
You could throw away the following items:
Mixed paper: Newspaper, magazine, junk mail, cardboard, frozen food packaging, wrapping paper, paper bags, etc.
Cans: aluminum, foil, tin, steal, aerosol (empty without pressure) and metal food trays. ...
Unbroken glass: Wine bottles, bottles and jars.
Plastic: Rigid containers like milk jugs, shampoo or water bottles.
Hope this helped
Answer:
a

b

Explanation:
From the question we are told that
The child's weight is 
The length of the sliding surface of the playground is 
The coefficient of friction is 
The angle is 
The initial speed is 
Generally the normal force acting on the child is mathematically represented as
=> 
Note 
Generally the frictional force between the slide and the child is

Generally the resultant force acting on the child due to her weight and the frictional force is mathematically represented as

Here F is the resultant force and it is represented as 
=> 
=> 
=> 
=>
So

=> 
Generally the heat energy generated by the frictional force which equivalent tot the workdone by the frictional force is mathematically represented as

=> 
=> 
Generally from kinematic equation we have that

=> 
=> 
=> 
Answer:
A. It does not exhibit projectile motion and follows a straight path down the ramp.
Answer:
if your glasses are polarized, you can see the fish in the water. also im pretty sure its d
Explanation:
You are running at constant velocity in the x direction, and based on the 2D definition of projectile motion, Vx=Vxo. In other words, your velocity in the x direction is equal to the starting velocity in the x direction. Let's say the total distance in the x direction that you run to catch your own ball is D (assuming you have actual values for Vx and D). You can then use the range equation, D= (2VoxVoy)/g, to find the initial y velocity, Voy. g is gravitational acceleration, -9.8m/s^2. Now you know how far to run (D), where you will catch the ball (xo+D), and the initial x and y velocities you should be throwing the ball at, but to find the initial velocity vector itself (x and y are only the components), you use the pythagorean theorem to solve for the hypotenuse. Because you know all three sides of the triangle, you can also solve for the angle you should throw the ball at, as that is simply arctan(y/x).