Answer:
Explanation:
Width of central diffraction peak is given by the following expression
Width of central diffraction peak= 2 λ D/ d₁
where d₁ is width of slit and D is screen distance and λ is wave length.
Width of other fringes become half , that is each of secondary diffraction fringe is equal to
λ D/ d₁
Width of central interference peak is given by the following expression
Width of each of bright fringe = λ D/ d₂
where d₂ is width of slit and D is screen distance and λ is wave length.
Now given that the central diffraction peak contains 13 interference fringes
so ( 2 λ D/ d₁) / λ D/ d₂ = 13
then ( λ D/ d₁) / λ D/ d₂ = 13 / 2
= 6.5
no of fringes contained within each secondary diffraction peak = 6.5
Answer:
hagcsgdufgeuwuwgsgwhajisydcbeek
Explanation:
edowooooooww
Answer:
Average speed will be 48.23 km/h
Explanation:
Let the distance up to hill is = d km
Speed when car goes to hill = 38 km/h
So time required 
Speed when car return from hill = 66 km/h
So time required to return fro hill 
Total time 
Total distance = d+d =2d
So average speed
Answer:
A. the left half becomes neutral while the right half remains negatively charged
Explanation:
This is because wherever light strikes the photoconductor, it transforms from an insulator into a conductor. The charge will then migrate through it and leaves its surface. By exposing the left half of the photoconductor to light, you allow its local charge to leave and it becomes neutral.
Answer:
7.82 s
Explanation:
Given:
Δy = 300 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
(300 m) = (0 m/s) t + ½ (9.8 m/s²) t²
t = 7.82 s