Answer:
Below
Explanation:
To calculate the time it took for the cyclist to finish their race, you can you this equation :
time = displacement / velocity
Plug in your values....
time = (100 mi) / (22 mi/h)
= 4.54545454.... hours
As for sig figs in this question you would need to round this answer to 1 sig fig because 100 only has 1 sig fig. (you round to the lowest # of sig figs in the question)
= 5 hours
It took the cyclist 5 hours to complete their race
Hope this helps! Best of luck <3
<span>Answers: (a) 2.0 m/s (b) 4 m/s
Method:
(a) By conservation of momentum, the velocity of the center of mass is unchanged, i.e., 2.0 m/s.
(b) The velocity of the center of mass = (m1v1+m2v2) / (m1+m2)
Since the second mass is initially at rest, vcom = m1v1 / (m1+m2)
Therefore, the initial v1 = vcom (m1+m2) / m1 = 2.0 m/s x 6 = 12 m/s
Since the second mass is initially at rest, v2f = v1i (2m1 /m1+m2 ) = 12 m/s (2/6) = 4 m/s </span>
Answer:
Part(a): The value of the spring constant is
.
Part(b): The work done by the variable force that stretches the collagen is
.
Explanation:
Part(a):
If '
' be the force constant and if due the application of a force '
' on the collagen '
' be it's increase in length, then from Hook's law

Also, Young's modulus of a material is given by

where '
' is the area of the material and '
' is the length.
Comparing equation (
) and (
) we can write

Here, we have to consider only the circular surface of the collagen as force is applied only perpendicular to this surface.
Substituting the given values in equation (
), we have

Part(b):
We know the amount of work done (
) on the collagen is stored as a potential energy (
) within it. Now, the amount of work done by the variable force that stretches the collagen can be written as

Substituting all the values, we can write

Answer:
Temperature at which the resistance is twice the resistance at
is 
Solution:
As per the question:
Temperature coefficient, 
Reference temperature, 
Resistance, 
Now, using the formula:





- Yes, this temperature holds for all all the conductors of copper, irrespective of the size and shape of the conductor.
Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
(4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg
force of gravity = (mass) x (acceleration of gravity) = (360 kg) x (9.8 m/s²) = (360 x 9.8) kg-m<span>/s² </span><span>= </span>3,528 newtons .