For plato users
the answer is a. O2(l) O2(g)
hope this helps!
<u>Given:</u>
Initial velocity (v1) = 0 m/s
Final velocity (v2) = 30 m/s
Acceleration (a) = 6.1 m/s2
<u>To determine:</u>
The time (t) taken to reach the final speed
<u>Explanation:</u>
Use the relation:
Acceleration (a) = [final velocity(v2) - initial velocity (v1)]/time (t)
t = (v2-v1)/a = 30-0/6.1 = 4.92 s
Ans: Time taken is around 4.9 s
It is a graph. It shows observations and then you record your results with any of the graph types.
Answer:
when the rates of the forward and reverse reactions are equal
Explanation:
In a chemical system, the reaction reaches a dynamic equilibrium when the rate of formation of product equals the rate of formation of reactants. This implies that both the forward and revered(backwards) reaction are occurring at the same rate.
<span>The chemical mixture that composes our atmosphere is called Synopt.</span>