1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hunter-Best [27]
3 years ago
11

Two factors that can be used to evaluate ______ are life expectancy and quality of life.

Physics
1 answer:
Olin [163]3 years ago
8 0
Two factors that can be used to evaluate health are life expectancy and quality of life
You might be interested in
A person's speed around the Earth is faster at the poles than it is at the equator.
VashaNatasha [74]

Answer:

no

Explanation:

it is faster at the equator

6 0
2 years ago
One person can hold mutiple types of authority at a time<br><br><br> T/F
Anit [1.1K]
True,i might be wrong.
4 0
3 years ago
An electron and a proton each have a thermal kinetic energy of 3kBT/2. Calculate the de Broglie wavelength of each particle at a
S_A_V [24]

Answer:

Given:

Thermal Kinetic Energy of an electron, KE_{t} = \frac{3}{2}k_{b}T

k_{b} = 1.38\times 10^{- 23} J/k = Boltzmann's constant

Temperature, T = 1800 K

Solution:

Now, to calculate the de-Broglie wavelength of the electron, \lambda_{e}:

\lambda_{e} = \frac{h}{p_{e}}

\lambda_{e} = \frac{h}{m_{e}{v_{e}}              (1)

where

h = Planck's constant = 6.626\times 10^{- 34}m^{2}kg/s

p_{e} = momentum of an electron

v_{e} = velocity of an electron

m_{e} = 9.1\times 10_{- 31} kg = mass of electon

Now,

Kinetic energy of an electron = thermal kinetic energy

\frac{1}{2}m_{e}v_{e}^{2} = \frac{3}{2}k_{b}T

}v_{e} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{e}}}

}v_{e} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{9.1\times 10_{- 31}}}

v_{e} = 2.86\times 10^{5} m/s                    (2)

Using eqn (2) in (1):

\lambda_{e} = \frac{6.626\times 10^{- 34}}{9.1\times 10_{- 31}\times 2.86\times 10^{5}} = 2.55 nm

Now, to calculate the de-Broglie wavelength of proton, \lambda_{e}:

\lambda_{p} = \frac{h}{p_{p}}

\lambda_{p} = \frac{h}{m_{p}{v_{p}}                             (3)

where

m_{p} = 1.6726\times 10_{- 27} kg = mass of proton

v_{p} = velocity of an proton

Now,

Kinetic energy of a proton = thermal kinetic energy

\frac{1}{2}m_{p}v_{p}^{2} = \frac{3}{2}k_{b}T

}v_{p} = \sqrt{2\frac{\frac{3}{2}k_{b}T}{m_{p}}}

}v_{p} = \sqrt{\frac{3\times 1.38\times 10^{- 23}\times 1800}{1.6726\times 10_{- 27}}}

v_{p} = 6.674\times 10^{3} m/s                               (4)                    

Using eqn (4) in (3):

\lambda_{p} = \frac{6.626\times 10^{- 34}}{1.6726\times 10_{- 27}\times 6.674\times 10^{3}} = 5.94\times 10^{- 11} m = 0.0594 nm

7 0
3 years ago
How many sandwiches were made in the hour?
S_A_V [24]

Answer:

25

Explanation:

simple facts.

7 0
3 years ago
The waves with the lowest energy and lowest frequencies of the electromagnetic spectrum are the
Andru [333]
<span>The waves with the lowest energy and lowest frequencies of the electromagnetic spectrum are the "Radio waves"

So, option B is your answer

Hope this helps!
</span>
5 0
3 years ago
Other questions:
  • Write the minkowski version of newtons seconds law in terms of proper acceleration
    12·1 answer
  • When conducting this experiment, some procedures call for heating the substance several
    5·1 answer
  • A 10 kg block is pushed with a constant horizontal force of 20 n against a constant horizontal frictional force of 10 n. What is
    9·1 answer
  • In diving to a depth of 248 m, an elephant seal also moves 296 m due east of his starting point. What is the magnitude of the se
    7·1 answer
  • Two objects of different mass rest on earth. Which one experiences the greater acceleration due to gravity?
    10·1 answer
  • 2. When pressing the accelerator on a
    6·1 answer
  • Describe the effect of the amplitude on the velocity of the pulse!???
    10·1 answer
  • What are the characteristics of a nebulae? (Select all that apply.)
    10·1 answer
  • Which of the following situations would violate the second law of
    10·1 answer
  • Forces of 2 newtons and 3 newtons are acting on an object as shown in the drawing below. Calculate the resultant force in newton
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!