Given:
density of air at inlet, 
density of air at inlet, 
Solution:
Now,

(1)
where
A = Area of cross section
= velocity of air at inlet
= velocity of air at outlet
Now, using eqn (1), we get:

= 1.14
% increase in velocity =
=114%
which is 14% more
Therefore % increase in velocity is 14%
I can help you with that if you translate to English
Answer:
Work done on an object is equal to
FDcos(angle).
So, naturally, if you lift a book from the floor on top of the table you do work on it since you are applying a force through a distance.
However, I often see the example of carrying a book through a horizontal distance is not work. The reasoning given is this: The force you apply is in the vertical distance, countering gravity and thus not in the direction of motion.
But surely you must be applying a force (and thus work) in the horizontal direction as the book would stop due to air friction if not for your fingers?
Is applying a force through a distance only work if causes an acceleration? That wouldn't make sense in my mind. If you are dragging a sled through snow, you are still doing work on it, since the force is in the direction of motion. This goes even if velocity is constant due to friction.
Explanation:
Answer:
0.775 m
Explanation:
As the car collides with the bumper, all the kinetic energy of the car (K) is converted into elastic potential energy of the bumper (U):

where we have
is the spring constant of the bumper
x is the maximum compression of the bumper
is the mass of the car
is the speed of the car
Solving for x, we find the maximum compression of the spring:

Hey how's your day going
I hope after I answer that you understand and don't just paste my answer into your assignment!!! (<- read!!!)
Answer \|/
Ice is less dense than water.
Reason why \|/
When water freezes the molecules inside completely stop moving (They still vibrate but don't change their position much). In doing so, they spread out a touch which makes it less dense than liquid water. So ice floats