Answer:
<em>The equivalent resistance of the combination is R/100</em>
Explanation:
<u>Electric Resistance</u>
The electric resistance of a wire is directly proportional to its length. If a wire of resistance R is cut into 10 equal parts, then each part has a resistance of R/10.
Parallel connection of resistances: If R1, R2, R3,...., Rn are connected in parallel, the equivalent resistance is calculated as follows:

If we have 10 wires of resistance R/10 each and connect them in parallel, the equivalent resistance is:

This sum is repeated 10 times. Operating each term:

All the terms have the same denominator, thus:

Taking the reciprocals:

The equivalent resistance of the combination is R/100
Answer:
2.0 m/s/s
Explanation:
The acceleration of an object is the rate of change of velocity of the object.
Mathematically, it is given by:

where
u is the initial velocity
v is the final velocity
t is the time taken for the velocity to change from u to v
Acceleration is a vector, so it has both a magnitude and a direction.
For the runner in this problem, we have:
u = 0 is the initial velocity (he starts from rest)
v = 8.0 m/s is the final velocity
t = 4.0 s is the time taken
Substituting, we find

If these were the missing choices:
a)
Consumers fill out questionnaires concerning
their need for new products.
b)
Consumers vote for politicians who decide which
kind of research to support
c)
Consumers decide what to buy and what not to buy
d)
Consumers influence the decisions of private
foundations by deciding where to donate money.
My answer would be: c) <span>Consumers decide what to buy and what not to buy</span>
Every growth is based on the demand of the people. If a good or service is needed then its demand will increase. If a good or service is not needed then its demand will decrease until such time that said good or service will be eliminated.
Answer:
A generator turns rotary motion into electricity. It is basically the inverse of a motor. Generally a transformer changes one voltage into another based on the number of conductor windings on each side. There are two sets of windings called the “primary” and the “secondary”.
Explanation: