The object that had the most 1000 ton weight has the most momentum
Answer:
v₁f = 0.5714 m/s (→)
v₂f = 2.5714 m/s (→)
e = 1
It was a perfectly elastic collision.
Explanation:
m₁ = m
m₂ = 6m₁ = 6m
v₁i = 4 m/s
v₂i = 2 m/s
v₁f = ((m₁ – m₂) / (m₁ + m₂)) v₁i + ((2m₂) / (m₁ + m₂)) v₂i
v₁f = ((m – 6m) / (m + 6m)) * (4) + ((2*6m) / (m + 6m)) * (2)
v₁f = 0.5714 m/s (→)
v₂f = ((2m₁) / (m₁ + m₂)) v₁i + ((m₂ – m₁) / (m₁ + m₂)) v₂i
v₂f = ((2m) / (m + 6m)) * (4) + ((6m -m) / (m + 6m)) * (2)
v₂f = 2.5714 m/s (→)
e = - (v₁f - v₂f) / (v₁i - v₂i) ⇒ e = - (0.5714 - 2.5714) / (4 - 2) = 1
It was a perfectly elastic collision.
The answer is A. They are both processes in which water is changed into water vapor.
Answer: 288.8 m
Explanation:
We have the following data:
is the time it takes to the child to reach the bottom of the slope
is the initial velocity (the child started from rest)
is the angle of the slope
is the length of the slope
Now, the Force exerted on the sled along the ramp is:
(1)
Where
is the mass of the sled and
its acceleration
In addition, if we draw a free body diagram of this sled, the force along the ramp will be:
(2)
Where
is the acceleration due gravity
Then:
(3)
Finding
:
(4)
(5)
(6)
Now, we will use the following kinematic equations to find
:
(7)
(8)
Where
is the final velocity
Finding
from (7):
(9)
(10)
Substituting (10) in (8):
(11)
Finding
:
