It is given that by using track and cart we can record the time and the distance travelled and also the speed of the cart can be recorded. With all this data we can solve questions on the laws of motion.
Like using the first law of motion we can determine the force of gravity acting on the cart that has moved a certain distance and the velocity or the speed of card has already been registered and since time is known putting the values in formula would help us calculate the gravitational pull acting on cart.
Net force on the car=F=4.8 x 10³ N
Explanation:
mass of car= 1.2 x 10³ Kg
initial velocity= Vi=0
Final velocity= Vf= 20 m/s
time = t= 5 s
Using kinematic equation,
Vf= Vi + at
20= 0 + a (5)
5 a=20
a= 20/5
a= 4 m/s²
Now force is given by F = ma
F= 1.2 x 10³ (4)
F=4.8 x 10³ N
Answer:
That is, mechanical waves cannot travel through a vacuum. This feature of mechanical waves is often demonstrated in a Physics class. A ringing bell is placed in a jar and air inside the jar is evacuated. Once air is removed from the jar, the sound of the ringing bell can no longer be heard.
Answer:
0.005 meters
Explanation:
1 meter = 100 cm
Which means you get meter by this equation

Therefore the answer is

Answer:
b) 252 Hz or 260 Hz
c) 0.25 s
Explanation:
b) The frequency of the beats is 4 Hz, and one tuning fork has a frequency of 256 Hz. Therefore, the second tuning fork is either 4 Hz lower or 4 Hz higher.
f = 252 Hz or 260 Hz
c) Period is the inverse of frequency.
T = 1/f
T = 1 / (4 Hz)
T = 0.25 s