The maximum force that the tires can exert on the road before slipping is 16200 N.
From the information in the question;
The coefficient of static friction = 0.9
The mass of the car = 1800 kg
Using the formula;
μ = F/R
μ = coefficient of static friction
F = force on the tires
R = the reaction force
But recall that the reaction is equal in magnitude to the weight of the car.
W=R
Hence; R = 1800 kg × 10 ms-2 = 18000 N
Making F the subject of the formula;
F = μR
Substituting values;
F = 18000 N × 0.9
F = 16200 N
Hence, the maximum force that the tires can exert on the road before slipping is 16200 N.
Learn more: brainly.com/question/18754989
I think it will reduce in speed because friction drags it to the opposite direction and it were the girls mass that was overcoming friction but i think it is newtons 2nd law of motion
Answer:
W= -2.5 (p₁*0.0012) joules
Explanation:
Given that p₀= initial pressure, p₁=final pressure, Vi= initial volume=0 and Vf=final volume= 6/5 liters where p₁=p₀ then
In adiabatic compression, work done by mixture during compression is
W=
where f= final volume and i =initial volume, p=pressure
p can be written as p=K/V^γ where K=p₀Vi^γ =p₁Vf^γ
W= 
W= K/1-γ ( 1/Vf^γ-1 - 1/Vi^γ-1)
W=1/1-γ (p₁Vf-p₀Vi)
W= 1/1-1.40 (p₁*6/5 -p₀*0)
W= -2.5 (p₁*6/5*0.001) changing liters to m³
W= -2.5 (p₁*0.0012) joules
Answer:
pulling a muscle. putting too much strain on a muscle causing a tear.
Explanation:
Doing warm ups help your muscles adjust to the full extent of a basketball game. Warming up is like stretching, helps your muscles adjust before going full out on the court.