Answer:
Mass is the quantitative measure of inertia of any object.
Explanation:
The object that have largest mass will have largest inertia as well as largest momentum.
The time that would be saved if the delicious chicken breast were thawed on the kitchen counter instead, given that room temperature is around 69 F could be calculated by :
tf - ti = 5.7
hope this helps
Answer:
The magnitude of the magnetic field is
.
Explanation:
Given that,
Charge, 
Speed of the charged particle, 
The angle between the velocity of the charge and the field is 56°.
The magnitude of force, 
We need to find the magnitude of the magnetic field. When a charged particle moves in the magnetic field, the magnetic force is experienced by it. The force is given by :

B is the magnetic field.

So, the magnitude of the magnetic field is
. Hence, this is the required solution.
Answer:
W = 1.06 MJ
Explanation:
- We will use differential calculus to solve this problem.
- Make a differential volume of water in the tank with thickness dx. We see as we traverse up or down the differential volume of water the side length is always constant, hence, its always 8.
- As for the width of the part w we see that it varies as we move up and down the differential element. We will draw a rectangle whose base axis is x and vertical axis is y. we will find the equation of the slant line that comes out to be y = 0.5*x. And the width spans towards both of the sides its going to be 2*y = x.
- Now develop and expression of Force required:
F = p*V*g
F = 1000*(2*0.5*x*8*dx)*g
F = 78480*x*dx
- Now, the work done is given by:
W = F.s
- Where, s is the distance from top of hose to the differential volume:
s = (5 - x)
- We have the work as follows:
dW = 78400*x*(5-x)dx
- Now integrate the following express from 0 to 3 till the tank is empty:
W = 78400*(2.5*x^2 - (1/3)*x^3)
W = 78400*(2.5*3^2 - (1/3)*3^3)
W = 78400*13.5 = 1058400 J