Answer:
The second ring in an atom can only hold up to 8 electrons.
Answer:
Value = 1.80 g/cm³ (Approx)
Explanation:
Given:

Computation:

Value = 1.80 g/cm³ (Approx)
Answer:
a. pH = 2 b. pH = 3 c. pH = 1 d. Unanswerable
Explanation:
pH = -log[H+] OR pH = -log{H3O+]
and inversely
pOH = -log[OH-]
1. Determine what substance you are working with, (acid/base)
2. Determine whether or not that acid or base is strong or weak.
a. 1.0 x 10^-2M HCl
HCl is a strong acid, therefore it will dissociate completely into H+ and Cl- with all ions going to the H+, therefore, the concentration of HCl and concentration of H+ are going to be equal, meaning we simply take the negative logarithm of the concentration of HCl and that would equal pH
pH = -log[H+]
pH = -log(1.0x10^-2)
pH = 2
b. 1.0 x 10^-3M HNO3
HNO3 like part a, is a strong acid, therefore it would simply require you to take the negative logarithm of the concentration of the compound itself, to find its pH.
pH = -log[H+]
pH = -log(1.0 x 10^-3)
pH = 3
c. 1.0 x 10^-1M HI
Like the previous parts, HI is a strong acid
pH = -log[H+]
pH = -log(0.10)
pH = 1
d. HB isn't an element, nor is it a compound so that would be unanswerable.
Answer:
0.4 M
Explanation:
Equilibrium occurs when the velocity of the formation of the products is equal to the velocity of the formation of the reactants. It can be described by the equilibrium constant, which is the multiplication of the concentration of the products elevated by their coefficients divided by the multiplication of the concentration of the reactants elevated by their coefficients. So, let's do an equilibrium chart for the reaction.
Because there's no O₂ in the beginning, the NO will decompose:
N₂(g) + O₂(g) ⇄ 2NO(g)
0.30 0 0.70 Initial
+x +x -2x Reacts (the stoichiometry is 1:1:2)
0.30+x x 0.70-2x Equilibrium
The equilibrium concentrations are the number of moles divided by the volume (0.250 L):
[N₂] = (0.30 + x)/0.250
[O₂] = x/0.25
[NO] = (0.70 - 2x)/0.250
K = [NO]²/([N₂]*[O₂])
K = 
7.70 = (0.70-2x)²/[(0.30+x)*x]
7.70 = (0.49 - 2.80x + 4x²)/(0.30x + x²)
4x² - 2.80x + 0.49 = 2.31x + 7.70x²
3.7x² + 5.11x - 0.49 = 0
Solving in a graphical calculator (or by Bhaskara's equation), x>0 and x<0.70
x = 0.09 mol
Thus,
[O₂] = 0.09/0.250 = 0.36 M ≅ 0.4 M
Answer: ok ill just take my points in dip
Explanation: