Answer:
If the pKa of the acid is low (negative), then the acid is strong.
Explanation:
Ka, <em>the acid ionization constant, </em>measures the strength of an acid in a solution. Stronger acids have higher Ka values.
We defined: pKa = -log[Ka]
This function is a decreasing function, meaning that pKa will be getting smaller and smaller, while increasing Ka (high values of Ka will have negative pKa values). Therefore, stronger acids (high values of Ka), will have low (negative) pKa values.
Hey there!:
Given the mass of PbCl(OH) :
0.135 Kg = 0.135 Kg*(1000g / 1Kg) = 135 g
Molecular mass of PbCl(OH) = 207+35.5+16+1 = 259.5 g / mol
Atomic mass of Pb = 207 g/mol
Hence mass of Pb in 135 g PbCl(OH) :
(207 g Pb / 259.5 g PbClOH) * 135g PbClOH =
0.79768 * 135 => 107.68 g of Pb
For Pb2Cl2CO3 :
Given the mass of Pb2Cl2CO3 :
0.135 Kg = 0.135 Kgx(1000g / 1Kg) = 135 g
Molecular mass of Pb2Cl2CO3 = 2*207+2*35.5+12+3*16 = 545 g / mol
Mass of Pb present in 1 mol (=545 g / mol) of Pb2Cl2CO3 = 2*207 = 414 g
Hence mass of Pb in 135 g Pb2Cl2CO3:
(414 g Pb / 545 g PbClOH) * 135g PbClOH =
0.75963 * 135 => 102.55 g of Pb2Cl2CO3
Hope that helps!
<span>N = +3, H = +1 ,Cl = -1
</span><span>
</span>