Thus BeF2 is of most covalent character.
Anyways, covalent/ionic character is a bit tricky to figure out; we measure the difference in electronegativity of two elements bonding together and we use the following rule of thumb: if the charge is 0 (or a little more), the bond is non-polar covalent; if the charge is > 0 but < 2.0 (some references say 1.7), the bond is polar covalent; if the charge is > 2.0 then the bond is ionic. Covalent character refers to smaller electronegativity difference while ionic character refers to greater electronegativity difference.
Now, notice all of our bonds are with F, fluorine, which has the highest electronegativity of 3.98. This means that to determine character we need to consider the electronegativities of the other elements -- whichever has the greatest electronegativity has the least difference and most covalent character.
Na, sodium, has electronegativity of 0.93, so our difference is ~3 -- meaning our bond is ionic. Ca, calcium, has 1.00, leaving our difference to again be ~3 and therefore the bond is ionic. Be, beryllium, has 1.57 yielding a difference of ~2.5, meaning we're still dealing with ionic bond. Cs, cesium, has 0.79, meaning our difference is again ~3 and therefore again our compound is of ionic bond. Lastly, we have Sr, strontium, with an electronegativity of 0.95 and therefore again a difference of roughly 3 and an ionic bond.
<span>
</span>
Carbon and oxygen to form carbon
Acid A, assuming the two acids have the same pH. The M stands for molarity which is how concentrated a substance is (basically the higher the molarity the more concentrated the acid is). However, pH refers to how acidic a substance is. If the two acids have different levels of acidity, the answer may be different.
Answer:

Explanation:
The work function of the sodium= 495.0 kJ/mol
It means that
1 mole of electrons can be removed by applying of 495.0 kJ of energy.
Also,
1 mole =
So,
electrons can be removed by applying of 495.0 kJ of energy.
1 electron can be removed by applying of
of energy.
Energy required =
Also,
1 kJ = 1000 J
So,
Energy required =
Also,
Where,
h is Plank's constant having value
c is the speed of light having value
So,
Also,
1 m = 10⁻⁹ nm
So,

Answer : The time passed in years is 
Explanation :
Half-life of carbon-14 = 5730 years
First we have to calculate the rate constant, we use the formula :



Now we have to calculate the time passed.
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = ?
a = initial amount of the reactant disintegrate = 15.3
a - x = amount left after decay process = 14.8
Now put all the given values in above equation, we get


Therefore, the time passed in years is 