1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margarita [4]
4 years ago
9

Expand and simplify 6x + 3 + 2x + 8

Mathematics
2 answers:
KatRina [158]4 years ago
8 0

Steps to solve:

6x + 3 + 2x + 8

~Combine Like Terms

(6x + 2x) + (3 + 8)

~Simplify

8x + 11

Best of Luck!

hjlf4 years ago
3 0

<em>HOPE</em><em> </em><em>THIS</em><em> </em><em>WILL</em><em> </em><em>HELP</em><em> </em><em>U</em><em>.</em><em>.</em><em>.</em>

You might be interested in
How to tell when to use sin, cos or tan​
lions [1.4K]

Answer:

Step-by-step explanation:

Keep in mind that these three trig functions can be interpreted as being the ratios of the side lengths of a triangle:

            opposite side

sin x = ----------------------

              hypotenuse

            adjacent side

cos x = ----------------------

              hypotenuse

            opposite side

tan x = ----------------------

             adjacent side

In the case where you have a right triangle and know the lengths of two of its three sides, that knowledge dictates which of the above trig functions to use in "solving the triangle."

------------------------------------------------------------------------------------------------------------

If, for example, the "opposite side" of a triangle is 3 and the "hypotenuse" is 5, we'd choose to use the sine function to find the angle opposite the "opposite side:"

            opposite side       3 units

sin x = ---------------------- = -------------

              hypotenuse         5 units

Find x by using the inverse sine function:

Angle x = arcsin 3/5 = 0.644 radians or 36.9 degrees.

3 0
3 years ago
Find the Derivative y’ implicitly.
Brums [2.3K]

e^{x^2y} - e^y = e^y(e^{x^2} - 1) = x

<em>We should ISOLATE x</em>

<em />e^y= \frac{x}{e^{x^2} - 1}

<em>Find the Natural Log of Both Sides to Make the Left Side "y"</em>

<em />y = ln(\frac{x}{e^{x^2}-1})

<em>Now, FIND THE DERIVATIVE Using Chain Rule!!!</em>

<em />y' = \frac{1}{\frac{x}{e^{x^2}-1}} * \frac{(1(e^{x^2}-1) - x(2x*e^{x^2})}{(e^{x^2}-1)^2}= {\frac{e^{x^2}-1}{x}}* \frac{(1(e^{x^2}-1) - x(2x*e^{x^2})}{(e^{x^2}-1)^2} = {\frac{1}{x}}* \frac{(1(e^{x^2}-1) - x(2x*e^{x^2})}{(e^{x^2}-1)} =  {\frac{1}{x}}* \frac{(e^{x^2}-1 - 2x^2e^{x^2})}{(e^{x^2}-1)}

3 0
3 years ago
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
What is the median and mode of 28,34,34,50,54
o-na [289]

Answer:

Both your median and mode are 34.

Step-by-step explanation:

The median is the middle of the set of numbers in order, and your mode is the number that appears the most.

Good luck :)

5 0
3 years ago
32 envelopes + 15 postcards = $47.11
sweet [91]
See photo

Hope it helps

3 0
3 years ago
Other questions:
  • How many critical points does the function f(x)=(x+2)^5(x-3)^4 have?
    13·1 answer
  • If two thirds of the quantity of eighteen less than six times a number is -26,what is the number?
    6·1 answer
  • kate used a 30% off coupon to purchase a sweater. If she paid $33.60, what was the original price? please explain
    12·2 answers
  • How do I do number 16?
    15·1 answer
  • a. Suppose a BMW dealer in Fullerton, CA is trying to calculate the probability of his car sale for next week. The dealer knows
    12·1 answer
  • what is the algebraic expression for the following word phrase the quotient of 8 and the sum of 3 and m
    15·1 answer
  • Question 3 (5 points)
    10·1 answer
  • Write an equation in point-slope form of the line containing (3, 4) and (-2,9). *
    8·1 answer
  • Which of the following expressions are equivalent to 7×7×7×7 ? Select all that apply.
    8·1 answer
  • What is the product of -2/7 and -3/7?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!