1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alukav5142 [94]
3 years ago
8

Tin atoms are introduced into a FCC copper crystal, producing an alloy with a lattice pa- rameter of 3.7589 x 10-8 cm and a dens

ity of 8.772 g/cm3. Calculate the atomic percentage of tin present in the alloy.
Engineering
1 answer:
stira [4]3 years ago
7 0

Given:

Lattice parameter, a = 3.7589\times 10^{-8}cm

density, \rho = 8.772g/cm^{3}\\

Solution:

We know that  for FCC, total no. of atoms in a crystal lattice = 4

let the number of atoms in Tin for alloying be 'n'

⇒ Total no. of Copper atoms in the alloy,  = 4 - n

Also mass of Copper, m = 63.54 g/mol

atomic mass of Tin = 118.69 g/mol

We Know density of the crystal lattice is given by the formula:

\rho = \frac{m\times Z}{a^{3}\times N_{A}}                 (1)

where,

N_{A} = Avagadro's number =  6.23\times 10_{23}

Putting all the values in eqn (1), we get

8.772 = \frac{118.69\times x\times (4 - n)\times 63.54}{(3.7589\times 10^{-8})^{3}\times 6.023\times 10^{23}}

280.6 = 55.15n +254.16

n = 0.479 atoms/cell

Now to calculate the atomic percentage of Tin present in the alloy:

atomic percentage = \frac{no. of atoms in Tin/cell}{Total no. of atoms in FCC lattice}

atomic % Tin present in alloy = \frac{0.479}{4} = 0.1198\times 100

atomic % Tin present in alloy = 11.98%

You might be interested in
Pure butanol is to be fed into a semibatch reactor containing pure ethyl acetate to produce butyl acetate and ethanol. The react
marissa [1.9K]

Answer:

See the pictures attached

Explanation:

All the explanation is given in the pictures

3 0
3 years ago
6. Question
valkas [14]

Answer:

Check  the 2nd, 3rd and 4th statements.

Explanation:

4 0
3 years ago
Air exits a compressor operating at steady-state, steady-flow conditions at 150 oC, 825 kPa, with a velocity of 10 m/s through a
ioda

Answer:

a) Qe = 0.01963 m^3 / s , mass flow rate m^ = 0.1334 kg/s

b) Inlet cross sectional area = Ai = 0.11217 m^2 , Qi = 0.11217 m^3 / s    

Explanation:

Given:-

- The compressor exit conditions are given as follows:

                  Pressure ( Pe ) = 825 KPa

                  Temperature ( Te ) = 150°C

                  Velocity ( Ve ) = 10 m/s

                  Diameter ( de ) = 5.0 cm

Solution:-

- Define inlet parameters:

                  Pressure = Pi = 100 KPa

                  Temperature = Ti = 20.0

                  Velocity = Vi = 1.0 m/s

                  Area = Ai

- From definition the volumetric flow rate at outlet ( Qe ) is determined by the following equation:

                   Qe = Ae*Ve

Where,

           Ae: The exit cross sectional area

                   Ae = π*de^2 / 4

Therefore,

                  Qe = Ve*π*de^2 / 4

                  Qe = 10*π*0.05^2 / 4

                  Qe = 0.01963 m^3 / s

 

- To determine the mass flow rate ( m^ ) through the compressor we need to determine the density of air at exit using exit conditions.

- We will assume air to be an ideal gas. Thus using the ideal gas state equation we have:

                   Pe / ρe = R*Te  

Where,

           Te: The absolute temperature at exit

           ρe: The density of air at exit

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρe = Pe / (R*Te)

                ρe = 825 / (0.287*( 273 + 150 ) )

                ρe = 6.79566 kg/m^3

- The mass flow rate ( m^ ) is given:

               m^ = ρe*Qe

                     = ( 6.79566 )*( 0.01963 )

                     = 0.1334 kg/s

- We will use the "continuity equation " for steady state flow inside the compressor i.e mass flow rate remains constant:

              m^ = ρe*Ae*Ve = ρi*Ai*Vi

- Density of air at inlet using inlet conditions. Again, using the ideal gas state equation:

               Pi / ρi = R*Ti  

Where,

           Ti: The absolute temperature at inlet

           ρi: The density of air at inlet

           R: the specific gas constant for air = 0.287 KJ /kg.K

             

                ρi = Pi / (R*Ti)

                ρi = 100 / (0.287*( 273 + 20 ) )

                ρi = 1.18918 kg/m^3

Using continuity expression:

               Ai = m^ / ρi*Vi

               Ai = 0.1334 / 1.18918*1

               Ai = 0.11217 m^2          

- From definition the volumetric flow rate at inlet ( Qi ) is determined by the following equation:

                   Qi = Ai*Vi

Where,

           Ai: The inlet cross sectional area

                  Qi = 0.11217*1

                  Qi = 0.11217 m^3 / s    

- The equations that will help us with required plots are:

Inlet cross section area ( Ai )

                Ai = m^ / ρi*Vi  

                Ai = 0.1334 / 1.18918*Vi

                Ai ( V ) = 0.11217 / Vi   .... Eq 1

Inlet flow rate ( Qi ):

                Qi = 0.11217 m^3 / s ... constant  Eq 2

               

6 0
4 years ago
Python:
stira [4]

Answer:

# Python Program to Print  

# all subsets of given size of a set  

 

import itertools  

 

def findsubsets(s, n):  

   return list(itertools.combinations(s, n))  

 

# Driver Code  

s = {1, 2, 3}  

n = 2

 

print(findsubsets(s, n))

-----------------------------------------------

# Python Program to Print  

# all subsets of given size of a set  

 

import itertools  

# def findsubsets(s, n):  

def findsubsets(s, n):  

   return [set(i) for i in itertools.combinations(s, n)]  

     

# Driver Code  

s = {1, 2, 3, 4}  

n = 3

 

print(findsubsets(s, n))

-------------------------------------------------------------

# Python Program to Print  

# all subsets of given size of a set  

 

import itertools  

from itertools import combinations, chain  

 

def findsubsets(s, n):  

   return list(map(set, itertools.combinations(s, n)))  

     

# Driver Code  

s = {1, 2, 3}  

n = 2

 

print(findsubsets(s, n))

4 0
4 years ago
A fluidis flowing through a capillary
Illusion [34]

Answer:

The velocity of the fluid is 1.1012 m/s

Solution:

As per the question, for the fluid:

Diameter of the capillary tube, d = 1.0 mm = 1.0\times 10^{- 3} m

Reynolds No., R  = 1000

Kinematic viscosity,  \mu_{k} = 1.1012\times 10^{- 6} m^{2}/s

Now, for the fluid velocity, we use the relation:

R = \frac{v_{f}\times d}{\mu_{k}}

where

v_{f} = velocity of fluid

v_{f} = \frac{R\times \mu_{k}}{d}

v_{f} = \frac{1000\times 1.1012\times 10^{- 6}}{1.0\times 10^{- 3}} = 1.1012 m/s

6 0
3 years ago
Other questions:
  • At a lake location, the soil surface is 6 m under the water surface. Samples from the soil deposit underlying the lake indicate
    15·1 answer
  • The device whose operation closely matches the way the clamp-on ammeter works is
    8·1 answer
  • How do you measure 1/8 teaspoon if you<br> only have a 1/4 teaspoon?
    11·2 answers
  • Find Re,Rc,R1 and R2!? Show your work.(hlp plz)
    7·1 answer
  • Consider the following Moore’s law growth pattern (since 1980) for the number of transistors inside a particular commercial micr
    12·1 answer
  • Which of the following is one of the three basic elements of a blueprint?
    5·1 answer
  • A segment of a roadway has a free flow speed of 45 mph and a jam density of 25 ft per vehicle. Determine the maximum flow and at
    12·1 answer
  • The oxygen consumption of an activated sludge plant is 60 g O2/L.d for the degradation of
    11·1 answer
  • The home inspector should measure the _____ depth of insulation observed at the unfinished attic floor.
    8·1 answer
  • ceramics must be heated in order to harden the clay and make it durable. the equipment used to heat the clay
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!