<h2>

→

</h2>
Explanation:
Ethanol can be oxidized to ethanal or acetaldehyde which is further oxidized to acid that is acetic acid.
→
[oxidation by loss of hydrogen]
-
An oxidizing agent potassium dichromate(VI) solution is used to remove the hydrogen from the ethanol.
- An oxidizing agent used along with dilute sulphuric acid for acidification.
Acetaldehyde can also be reduced back to ethanol again by adding hydrogen to it by using a reducing agent that is sodium tetrahydro borate, NaBH4.
- The oxidation of aldehydes to carboxylic acids can be done by the two-step process.
- In the first step, one molecule of water is added in the presence of a catalyst that is acidic.
- There is a generation of a hydrate. (geminal 1,1-diol).
→
[reduction by the gain of electrons]
Here, the oxidizing agent used is
in the presence of acetone.
The answer <span>is <span>8.9 g/mL</span>.</span>
The density (D) is <span>equal to mass (m) divided by volume (V): D = m/V
Let's find the mass of the object:
m = 156 g - 105.5 g = 50.5 g
Let's find the volume of the volume:
V = 30.7 mL - 25 mL = 5.7 mL
The density is:
D = m/V = 50.5 g / 5.7 mL = 8.9 g/mL</span>
Answer:
Substitution mutation
Explanation:
A substitution mutation is a type of mutation in which one or more nucleotide base is replaced by another in a sequence. This will result in the replacement of one or more amino acid in the amino acid sequence.
This is the case in this question where the original amino acid sequence was given as: Leucine – Alanine – Glycine – Leucine. After mutation, the following mutated sequence was produced: Leucine – Alanine – Valine – Leucine.
As illustrated above, one would notice that there is replacement of GLYCINE amino acid by VALINE in the mutated sequence, hence, it is an example of SUBSTITUTION MUTATION.
Answer:
the answer is D
Explanation:
percentage composition= mole of the substance divided by the total molar mass of the compound multiplied by 100.
Thick liquid lava
It's right