Answer:
31.31× 10²³ number of Cl⁻ are present in 2.6 moles of CaCl₂ .
Explanation:
Given data:
Number of moles of CaCl₂ = 2.6 mol
Number of Cl₂ ions = ?
Solution:
CaCl₂ → Ca²⁺ + 2Cl⁻
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
In one mole of CaCl₂ there are two moles of chloride ions present.
In 2.6 mol:
2.6×2 = 5.2 moles
1 mole Cl⁻ = 6.022 × 10²³ number of Cl⁻ ions
5.2 mol × 6.022 × 10²³ number of Cl⁻ / 1mol
31.31× 10²³ number of Cl⁻
The tea was no longer hot or (brewed) so the 5th didn’t dissolve like the others because the tea was hot or warm enough anymore it cooled down. So the sugar won’t dissolve no more.
Energy= 2381 joules
heat= Mass(kg) *change in temperature(K) * Cp
2381=0.155*(15)*Cp
Cp=1024 J/kg K
Answer:
The only one that makes sense IF the model behaves as the Earth is D.
Explanation:
Explanation:
The given data is as follows.
Concentration = 0.1
= 0.1 \frac{mol dm^{3}}{dm^{3}} \frac{10^{3}}{dm^{3}} \times \frac{6.022 \times 10^{23}}{1 mol} ions
=
T = = (30 + 273) K = 303 K
Formula for electric double layer thickness () is as follows.
=
where, = concentration =
Hence, putting the given values into the above equation as follows.
=
=
= m
or, =
= 1 nm (approx)
Also, it is known that =
Hence, we can conclude that addition of 0.1 of KCl in 0.1 of NaBr "" will decrease but not significantly.