<u>Answer:</u> The correct answer is Option D.
<u>Explanation:</u>
To calculate the hybridization of
, we use the equation:
![\text{Number of electron pair}=\frac{1}{2}[V+N-C+A]](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5BV%2BN-C%2BA%5D)
where,
V = number of valence electrons present in central atom (S) = 6
N = number of monovalent atoms bonded to central atom = 0
C = charge of cation = 0
A = charge of anion = 0
Putting values in above equation, we get:
![\text{Number of electron pair}=\frac{1}{2}[6]=3](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20electron%20pair%7D%3D%5Cfrac%7B1%7D%7B2%7D%5B6%5D%3D3)
The number of electron pair around the central metal atom are 3. This means that the hybridization will be
and the electronic geometry of the molecule will be trigonal planar.
Hence, the correct answer is Option D.
Answer:
ii.
Explanation:
Regulating weather patterns
Concentration of the reactant,pressure,surface
area of the reactant and temperatur
<span>The answer is deceleration. Acceleration is the general term to refer to the change in velocity. Acceleration = change in velocity / change in time. When you want to highlight the fact that the change in velocity is a decrease in the magnitude, you can use the term deceleration, which means that the acceleration is negative.</span>
Moles of Oxygen= 2.8075 moles
<h3>Further explanation</h3>
Given
29.2 grams of acetylene
Required
moles of Oxygen
Solution
Reaction(Combustion of Acetylene) :
2 C₂H₂ (g) + 5 O₂ (g) ⇒ 4CO₂ (g) + 2H₂O (g)
Mol of Acetylene :
= mass : MW Acetylene
= 29.2 g : 26 g/mol
= 1.123
From equation, mol ratio of Acetylene(C₂H₂) : O₂ = 2 : 5, so mol O₂ :
= 5/2 x mol C₂H₂
= 5/2 x 1.123
= 2.8075 moles