You will need the equation PV = nRT
P = Pressure in kPa
V = Volume in L
n = moles
R = 8.314 (constant)
T = Temperature in Kelvin
First convert 2.5 atm into kPa:
2.5 X 101.3 = 253.25 kPa
Convert 125 Celsius into Kelvin:
125 + 273 = 398 K
Convert Gallons to Litres:
1.25 X 3.79 = 4.74 L
Plug your values into the equation to solve for n:
(253.25)(4.74) = n(8.314)(398)
n = (253.25)(4.74)/(8.314)(398)
n = 0.362 moles
Now use M = m/n to solve for the mass of O2
M = Molar Mass
M = mass
n= moles
32 = m/(0.362)
m = (32)(0.362)
m = 11.58g
Answer: Volume would be 196.15 mL if the temperature were changed to
and the pressure to 1.25 atmospheres.
Explanation:
Given:
,
= 256 mL,
= 720 torr (1 torr = 0.00131579 atm) = 0.947368 atm
,
Formula used to calculate volume is as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that the volume would be 196.15 mL if the temperature were changed to
and the pressure to 1.25 atmospheres.
Answer:
Electrons are transferred between atoms together in the ionic compound. The ions are arranged in a regular repeating pattern in an ionic crystal
Explanation:
Arrhenius theory is a theory about acids and bases. It says that acids are those substances that produces hydrogen ions (H+) when in solution and bases are the substances that dissiociates and produces hydroxide ions (OH-). It was introduced by Svante Arrhenius.